Modern Optics, Prof. Ruiz, UNCA doctorphys.com Chapter N. Fresnel Equations – Solutions

HW N1. Polarization (s) Theoretical Derivation. We derived the Fresnel equations for the p-polarization case

in class and found r_p^+ and t_p^- . Derive the Fresnel equations for the s-polarization shown in the figure. The answers are given below.

$$
r_s = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}
$$

$$
t_s = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2}
$$

Be particular sure to explain your angles in the analysis of the boundary conditions at the interface, working out one in detail.

Solution. First explain angles. The angles of the **B** vectors with respect to the horizontal are the same as their respective angles of incidence, reflection, and transmission. One is worked out in detail below.

The angle made with **Bⁱ** and the horizontal is the same as the angle of incidence due to both of these angles being complementary to ϕ_i .

Therefore, for the tangential components of the magnetic field to match at the boundary,

$$
-B_{i0}\cos\theta_i + B_{r0}\cos\theta_r = -B_{t0}\cos\theta_t,
$$

where minus signs mean that the **B** vector component is in the negative y direction.

For the tangential components of the electric field to match at the boundary,

 $E^{}_{i0}+E^{}_{r0}=E^{}_{i0}$ as all point out of the page in our figure (same direction).

But $\,\theta_i^{}=\theta_r^{}\,$ from the law of reflection. So let's call these angles $\,\theta_1^{}$, angles in the first medium.

Then let's call $\,\theta_{\scriptscriptstyle t}$, the angle in the second medium, $\,\theta_{\scriptscriptstyle 2}$.

Our equations become

 $E_{i0} + E_{r0} = E_{t0}$ and $-B_{i0} \cos \theta_1 + B_{r0} \cos \theta_1 = -B_{t0} \cos \theta_2$, i.e.,

$$
E_{i0} + E_{r0} = E_{t0} \quad \text{and} \quad \cos \theta_1 (B_{i0} - B_{r0}) = B_{t0} \cos \theta_2.
$$

Now we recall the connecting equation $\frac{E_o}{B_o} = c$ in vacuum and $\frac{E_o}{B_o} = v$ in general with

o

c n v $=\frac{c}{n}$. Therefore, *o o* B ^{*n*} *v* E_{ρ} *c* $v = \frac{h}{a}$ and $B_o = \frac{h}{a} E_o$ *n* $B_{\scriptscriptstyle \alpha} = -E$ *c* $=\frac{R}{a}E_o$. Then

 $\cos\theta_1 (B_{r0} - B_{i0}) = B_{t0} \cos\theta_2$ becomes $\frac{1}{1}E_{i0}} - \frac{n_1 E_{i0}}{1} = \frac{n_2 E_{i0}}{1}$ $\cos \theta_1 (\frac{n_1 E_{i0}}{c} - \frac{n_1 E_{i0}}{c}) = \frac{n_2 E_{i0}}{c} \cos \theta_2$ $\frac{E_{i0}}{c} - \frac{n_1 E_{r0}}{c}$) = $\frac{n_2 E_{r0}}{c}$ $\theta_1(\frac{n_1 E_{i0}}{n_1}-\frac{n_1 E_{i0}}{n_1})=\frac{n_2 E_{i0}}{n_1}\cos\theta_2$

or simply
$$
\cos \theta_1 (E_{i0} - E_{r0}) = E_{i0} \cos \theta_2
$$
.

Summary: $E_{i0} + E_{r0} = E_{t0}$ and $n_1 \cos \theta_1 (E_{i0} - E_{r0}) = n_2 E_{t0} \cos \theta_2$.

Divide our equations by $\,E_{i0}\,$ to get

$$
1 + \frac{E_{r0}}{E_{i0}} = \frac{E_{t0}}{E_{i0}} \quad \text{and} \quad n_1 \cos \theta_1 (1 - \frac{E_{r0}}{E_{i0}}) = n_2 \frac{E_{t0}}{E_{i0}} \cos \theta_2.
$$

With our usual definitions
$$
r = \frac{E_{r0}}{E_{io}}
$$
 and $t = \frac{E_{t0}}{E_{io}}$,
\n $1 + r = t$ and $n_1 \cos \theta_1 (1 - r) = n_2 t \cos \theta_2$.
\n $n_1 \cos \theta_1 (1 - r) = n_2 (1 + r) \cos \theta_2$
\n $n_1 \cos \theta_1 - n_1 r \cos \theta_1 = n_2 \cos \theta_2 + n_2 r \cos \theta_2$
\n $n_1 \cos \theta_1 - n_2 \cos \theta_2 = n_1 \cos \theta_1 r + n_2 r \cos \theta_2$
\n $r = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$

$$
t = 1 + r = 1 + \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}
$$

$$
n_1 \cos \theta_1 + n_2 \cos \theta_2
$$

$$
t = \frac{(n_1 \cos \theta_1 + n_2 \cos \theta_2) + (n_1 \cos \theta_1 - n_2 \cos \theta_2)}{n_1 \cos \theta_1 + n_2 \cos \theta_2}
$$

$$
t = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2}
$$

For the "Final Answers" we add the subscript "s" to each.

 $t_1 \cos \theta_1$

 θ

 $\left|\frac{n}{\theta_1+n_2\cos\theta_2}\right|$

n

$$
r_s = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}
$$

$$
t_s = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2}
$$

HW N2. Thin-Film Engineering.

A manufacturing firm is designing a transparent plate with index of refraction $n_2 = 2.00$. They would like you to design a thin film with index of refraction n so that light entering from the air will have as little reflection back into the air as possible and transmission to the $n₂$ material is maximized.

Use the Fresnel equations at normal incidence to minimize the reflectivity. Remember that the reflectivity R_p is equal to the square of the reflection coefficient r_p of the Fresnel equations, that R_s is the square of r_s , and

$$
R = (R_p + R_s) / 2.
$$

The index of refraction of air is $n_1 = 1.00$ to 3 significant figures and you are given $n_2 = 2.00$ to 3 significant figures. Note that there are two R interfaces: reflection at the n_1 -n interface and reflection at the $n-n_2$ interface. You will need to incorporate these in your analysis as well as worry about R_p and R_s . Report your value n for the thin film to 3 significant figures.

Solution. The Fresnel equations for the reflection coefficients are

$$
r_p = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_1 \cos \theta_2 + n_2 \cos \theta_1}
$$

$$
r_s = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}
$$

For normal incidence,

$$
r_p = \frac{n_2 \cos 0^\circ - n_1 \cos 0^\circ}{n_1 \cos 0^\circ + n_2 \cos 0^\circ} = \frac{n_2 - n_1}{n_1 + n_2} \qquad r_s = \frac{n_1 - n_2}{n_1 + n_2}
$$

$$
R_p = r_p^2 = \left[\frac{n_2 - n_1}{n_1 + n_2}\right]^2 \qquad R_s = r_s^2 = \left[\frac{n_1 - n_2}{n_1 + n_2}\right]^2 = R_p
$$

$$
R = \frac{R_p + R_s}{2} = \left[\frac{n_1 - n_2}{n_1 + n_2}\right]^2
$$

But there are two relevant interfaces where reflection occurs.

We have
$$
R_1 = \left[\frac{1-n}{1+n}\right]^2 = \left[\frac{n-1}{n+1}\right]^2
$$
 and $R_2 = \left[\frac{n-2}{n+2}\right]^2$.

Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

$$
T_1 = 1 - R_1 = 1 - \left[\frac{n-1}{n+1}\right]^2 = \frac{(n+1)^2 - (n-1)^2}{(n+1)^2}
$$

$$
T_1 = \frac{(n^2 + 2n + 1) - (n^2 - 2n + 1)}{(n+1)^2} = \frac{4n}{(n+1)^2}
$$

$$
T_2 = 1 - R_1 = 1 - \left[\frac{n-2}{n+2}\right]^2 = \frac{(n+2)^2 - (n-2)}{(n+2)^2}
$$

$$
T_1 = \frac{(n^2 + 4n + 4) - (n^2 - 4n + 4)}{(n+1)^2} = \frac{8n}{(n+1)^2}
$$

We need to find n that minimizes $I_{total} = \frac{1}{(m+1)^2} \frac{1}{(m+2)^2}$ $4n$ 8 $\overline{(n+1)^2}$ $\overline{(n+2)}$ *n n* $T_{\text{total}} = \frac{4n}{(1.1)^2} \frac{8n}{(1.1)^2} I$ $=\frac{-n}{(n+1)^2}\frac{6n}{(n+2)^2}I$.

The procedure is a max-in problem:
$$
\frac{dT_{\text{total}}}{dn} = 0
$$

$$
\frac{d}{dn}\left[n^2(n+1)^{-2}(n+2)^{-2}\right]=0
$$

 $T_1 = 1 - R_1 = 1 - \left[\frac{n-1}{n+1}\right]^2 = \frac{(n+1)^2 - (n-1)^2}{(n+1)^2}$
 $T_1 = \frac{(n^2 + 2n + 1) - (n^2 - 2n + 1)}{(n+1)^2} = \frac{4n}{(n+1)^2}$
 $T_2 = 1 - R_1 = 1 - \left[\frac{n-2}{n+2}\right]^2 = \frac{(n+2)^2 - (n-2)}{(n+2)^2}$
 $T_1 = \frac{(n^2 + 4n + 4) - (n^2 - 4n + 4)}{(n+1)^2} = \frac{8n}{(n+1)^2}$ Note that if $\frac{d}{dx}(fgh) = f'gh + fg'h + fgh' = 0$ *dx* $f = f'gh + fg'h + fgh' = 0$ _{, then divide by fgh to get} $\frac{1}{c^2} \frac{d}{dx} (fgh) = \frac{f'}{f} + \frac{g'}{g} + \frac{h'}{h} = 0$ $\frac{1}{fgh} \frac{d}{dx} (fgh) = \frac{f}{f} + \frac{g}{g} + \frac{h}{h}$ $=\frac{f'}{f}+\frac{g'}{g}+\frac{h'}{g}=0$ Let $f = n^2$, $g = (n+1)^{-2}$, and $h = (n+2)^{-2}$. Then $^{2}(n+1)^{-2}(n+2)^{-2}$ $\frac{1}{(n+1)^{-2}(n+2)^{-2}}$ $(n+1)^{-2} (n+2)^{-2}$] = 0 $\frac{1}{(n+1)^{-2}(n+2)^{-2}}\frac{d}{dt}$ $n^2(n+1)^{-2}(n)$ $\frac{1}{n^2(n+1)^{-2}(n+2)^{-2}}\frac{d}{dn}\left[n^2(n+1)^{-2}(n+2)^{-2}\right]$ $\frac{1}{r^2(n+2)^{-2}}\frac{d}{dx}$ $\frac{1}{(n+1)^{-2}(n+2)^{-2}} \frac{d}{dn} \left[n^2 (n+1)^{-2} (n+2)^{-2} \right] = 0$ and and

$$
\frac{2n}{n^2} - 2\frac{(n+1)^{-3}}{(n+1)^{-2}} - 2\frac{(n+2)^{-3}}{(n+2)^{-2}} = 0
$$

$$
\frac{1}{n} - \frac{1}{(n+1)} - \frac{1}{(n+2)} = 0
$$

$$
\frac{(n+1)(n+2)-n(n+2)-n(n+1)}{n(n+1)(n+2)}=0
$$

The numerator will be zero.

 $(n+1)(n+2) - n(n+2) - n(n+1) = 0$ $(n^{2} + 3n + 2) - n^{2} - 2n - n^{2} - n = 0$ $(n^2 - n^2 - n^2) + (3n - 2n - n) + 2 = 0$ $-n^2 + 0 + 2 = 0$ $n^2 = 2$ $n = \sqrt{2}$ $n = 1.41$

$$
\frac{2n}{n^2} - 2\frac{(n+1)^{-3}}{(n+1)^{-2}} - 2\frac{(n+2)^{-3}}{(n+2)^{-2}} = 0
$$

\n
$$
\frac{1}{n} - \frac{1}{(n+1)} - \frac{1}{(n+2)} = 0
$$

\n
$$
\frac{(n+1)(n+2) - n(n+2) - n(n+1)}{n(n+1)(n+2)} = 0
$$

\nThe numerator will be zero.
\n
$$
(n+1)(n+2) - n(n+2) - n(n+1) = 0
$$

\n
$$
(n^2 + 3n + 2) - n^2 - 2n - n^2 - n = 0
$$

\n
$$
(n^2 - n^2 - n^2) + (3n - 2n - n) + 2 = 0
$$

\n
$$
-n^2 + 0 + 2 = 0
$$

\n
$$
n^2 = 2
$$

\n
$$
\boxed{n = \sqrt{2}}
$$
 Extra General Comment
\nIn general: $R_1 = \left[\frac{n_1 - n}{n_1 + n}\right]^2$ and $R_2 = \left[\frac{n - n_2}{n + n_2}\right]^2$. You get for the maximum transmission the geometric mean.
\n
$$
\boxed{n = \sqrt{n_1 n_2}}
$$

\nFor our specific case $n_1 = 1$ and $n_2 = 2$, giving $n = \sqrt{n_1 n_2} = \sqrt{1 \cdot 2} = \sqrt{2}$.

For our specific case $n_1 = 1$ and $n_2 = 2$, giving $n = \sqrt{n_1 n_2} = \sqrt{1 \cdot 2} = \sqrt{2}$.