Modern Optics, Prof. Ruiz, UNCA Chapter N. Fresnel Equations – Solutions

HW N1. Polarization (s) Theoretical Derivation. We derived the Fresnel equations for the p-polarization case

in class and found r_p and t_p . Derive the Fresnel equations for the s-polarization shown in the figure. The answers are given below.

$$r_{s} = \frac{n_{1}\cos\theta_{1} - n_{2}\cos\theta_{2}}{n_{1}\cos\theta_{1} + n_{2}\cos\theta_{2}}$$
$$t_{s} = \frac{2n_{1}\cos\theta_{1}}{n_{1}\cos\theta_{1} + n_{2}\cos\theta_{2}}$$

Be particular sure to explain your angles in the analysis of the boundary conditions at the interface, working out one in detail.

Solution. First explain angles. The angles of the **B** vectors with respect to the horizontal are the same as their respective angles of incidence, reflection, and transmission. One is worked out in detail below.

The angle made with **B**_i and the horizontal is the same as the angle of incidence due to both of these angles being complementary to ϕ_i .

Therefore, for the tangential components of the magnetic field to match at the boundary,

$$-B_{i0}\cos\theta_i + B_{r0}\cos\theta_r = -B_{t0}\cos\theta_t,$$

where minus signs mean that the **B** vector component is in the negative y direction.

For the tangential components of the electric field to match at the boundary,

 $E_{i0} + E_{r0} = E_{t0}$ as all point out of the page in our figure (same direction).

But $\theta_i = \theta_r$ from the law of reflection. So let's call these angles θ_1 , angles in the first medium.

Then let's call $\theta_{\scriptscriptstyle t}$, the angle in the second medium, $\theta_{\scriptscriptstyle 2}$.

Our equations become

 $E_{i0} + E_{r0} = E_{t0} \quad \text{and} \quad -B_{i0}\cos\theta_1 + B_{r0}\cos\theta_1 = -B_{t0}\cos\theta_2 \text{ , i.e.,}$

$$E_{i0} + E_{r0} = E_{t0} \quad \text{and} \quad \cos \theta_1 (B_{i0} - B_{r0}) = B_{t0} \cos \theta_2.$$

Now we recall the connecting equation $\frac{E_o}{B_o} = c$ in vacuum and $\frac{E_o}{B_o} = v$ in general with

$$n = \frac{c}{v}$$
. Therefore, $\frac{B_o}{E_o} = v = \frac{n}{c}$ and $B_o = \frac{n}{c}E_o$. Then

 $\cos\theta_{1}(B_{r0} - B_{i0}) = B_{t0}\cos\theta_{2} \text{ becomes } \cos\theta_{1}(\frac{n_{1}E_{i0}}{c} - \frac{n_{1}E_{r0}}{c}) = \frac{n_{2}E_{t0}}{c}\cos\theta_{2},$

or simply
$$\cos \theta_1 (E_{i0} - E_{r0}) = E_{t0} \cos \theta_2$$
.

Summary: $E_{i0} + E_{r0} = E_{i0}$ and $n_1 \cos \theta_1 (E_{i0} - E_{r0}) = n_2 E_{i0} \cos \theta_2$.

Divide our equations by E_{i0} to get

$$1 + \frac{E_{r0}}{E_{i0}} = \frac{E_{t0}}{E_{i0}} \quad \text{and} \quad n_1 \cos \theta_1 (1 - \frac{E_{r0}}{E_{i0}}) = n_2 \frac{E_{t0}}{E_{i0}} \cos \theta_2.$$

With our usual definitions
$$r = \frac{E_{r0}}{E_{io}}$$
 and $t = \frac{E_{r0}}{E_{io}}$,
 $1 + r = t$ and $n_1 \cos \theta_1 (1 - r) = n_2 t \cos \theta_2$.
 $n_1 \cos \theta_1 (1 - r) = n_2 (1 + r) \cos \theta_2$
 $n_1 \cos \theta_1 - n_1 r \cos \theta_1 = n_2 \cos \theta_2 + n_2 r \cos \theta_2$
 $n_1 \cos \theta_1 - n_2 \cos \theta_2 = n_1 \cos \theta_1 r + n_2 r \cos \theta_2$
 $r = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$

$$t = 1 + r = 1 + \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

$$t = \frac{(n_1 \cos \theta_1 + n_2 \cos \theta_2) + (n_1 \cos \theta_1 - n_2 \cos \theta_2)}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

$$t = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

For the "Final Answers" we add the subscript "s" to each.

$$r_{s} = \frac{n_{1}\cos\theta_{1} - n_{2}\cos\theta_{2}}{n_{1}\cos\theta_{1} + n_{2}\cos\theta_{2}} \qquad t_{s} = \frac{n_{1}}{n_{1}}$$

$$t_s = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

HW N2. Thin-Film Engineering.

A manufacturing firm is designing a transparent plate with index of refraction $n_2 = 2.00$. They would like you to design a thin film with index of refraction n so that light entering from the air will have as little reflection back into the air as possible and transmission to the n_2 material is maximized.

Use the Fresnel equations at normal incidence to minimize the reflectivity. Remember that the reflectivity R_p is equal to the square of the reflection coefficient r_p of the Fresnel equations, that R_s is the square of r_s , and

$$R = (R_p + R_s) / 2.$$

The index of refraction of air is $n_1 = 1.00$ to 3 significant figures and you are given $n_2 = 2.00$ to 3 significant figures. Note that there are two R interfaces: reflection at the n_1 -n interface and reflection at the $n-n_2$ interface. You will need to incorporate these in your analysis as well as worry about R_p and R_s . Report your value n for the thin film to 3 significant figures.

Solution. The Fresnel equations for the reflection coefficients are

$$r_p = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_1 \cos \theta_2 + n_2 \cos \theta_1} \qquad r_s = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

For normal incidence,

$$r_p = \frac{n_2 \cos 0^\circ - n_1 \cos 0^\circ}{n_1 \cos 0^\circ + n_2 \cos 0^\circ} = \frac{n_2 - n_1}{n_1 + n_2} \qquad r_s = \frac{n_1 - n_2}{n_1 + n_2}$$

$$R_{p} = r_{p}^{2} = \left[\frac{n_{2} - n_{1}}{n_{1} + n_{2}}\right]^{2} \qquad R_{s} = r_{s}^{2} = \left[\frac{n_{1} - n_{2}}{n_{1} + n_{2}}\right]^{2} = R_{p}$$

$$R = \frac{R_p + R_s}{2} = \left[\frac{n_1 - n_2}{n_1 + n_2}\right]^2$$

But there are two relevant interfaces where reflection occurs.

We have
$$R_1 = \left[\frac{1-n}{1+n}\right]^2 = \left[\frac{n-1}{n+1}\right]^2$$
 and $R_2 = \left[\frac{n-2}{n+2}\right]^2$.

Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

$$T_{1} = 1 - R_{1} = 1 - \left[\frac{n-1}{n+1}\right]^{2} = \frac{(n+1)^{2} - (n-1)^{2}}{(n+1)^{2}}$$
$$T_{1} = \frac{(n^{2} + 2n + 1) - (n^{2} - 2n + 1)}{(n+1)^{2}} = \frac{4n}{(n+1)^{2}}$$
$$T_{2} = 1 - R_{1} = 1 - \left[\frac{n-2}{n+2}\right]^{2} = \frac{(n+2)^{2} - (n-2)}{(n+2)^{2}}$$
$$T_{1} = \frac{(n^{2} + 4n + 4) - (n^{2} - 4n + 4)}{(n+1)^{2}} = \frac{8n}{(n+1)^{2}}$$

We need to find n that minimizes $T_{\text{total}} = \frac{4n}{(n+1)^2} \frac{8n}{(n+2)^2} I$.

The procedure is a max-in problem:
$$\displaystyle rac{dT_{ ext{total}}}{dn} = 0$$

$$\frac{d}{dn} \left[n^2 (n+1)^{-2} (n+2)^{-2} \right] = 0$$

Note that if $\frac{d}{dx}(fgh) = f'gh + fg'h + fgh' = 0$, then divide by fgh to get $\frac{1}{fgh}\frac{d}{dx}(fgh) = \frac{f'}{f} + \frac{g'}{g} + \frac{h'}{h} = 0$ Let $f = n^2$, $g = (n+1)^{-2}$, and $h = (n+2)^{-2}$. Then

$$\frac{1}{n^2(n+1)^{-2}(n+2)^{-2}}\frac{d}{dn}\left[n^2(n+1)^{-2}(n+2)^{-2}\right] = 0 \text{ and}$$

$$\frac{2n}{n^2} - 2\frac{(n+1)^{-3}}{(n+1)^{-2}} - 2\frac{(n+2)^{-3}}{(n+2)^{-2}} = 0$$
$$\frac{1}{n} - \frac{1}{(n+1)} - \frac{1}{(n+2)} = 0$$

$$\frac{(n+1)(n+2) - n(n+2) - n(n+1)}{n(n+1)(n+2)} = 0$$

The numerator will be zero.

(n+1)(n+2) - n(n+2) - n(n+1) = 0 $(n^{2} + 3n + 2) - n^{2} - 2n - n^{2} - n = 0$ $(n^{2} - n^{2} - n^{2}) + (3n - 2n - n) + 2 = 0$ $-n^{2} + 0 + 2 = 0$ $n^{2} = 2$ $\boxed{n = \sqrt{2}}$ $\boxed{n = 1.41}$

$$n_{1} = 1 \quad n_{2} = 2$$
Extra General Comment
$$In \text{ general:} \quad R_{1} = \left[\frac{n_{1} - n}{n_{1} + n}\right]^{2} \text{ and } R_{2} = \left[\frac{n - n_{2}}{n + n_{2}}\right]^{2}. \text{ You get for the maximum transmission the geometric mean.}$$

$$\boxed{n = \sqrt{n_{1}n_{2}}}$$

For our specific case $n_1 = 1$ and $n_2 = 2$, giving $n = \sqrt{n_1 n_2} = \sqrt{1 \cdot 2} = \sqrt{2}$.