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Chapter R. Fourier Optics 
 
R1. Fourier Series. 
 

Jean Baptiste Joseph Fourier (1768-1830)  
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Derivations follow. 

(1) First consider ( )f x dx
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Question: Why can we write cos( ) 0mx dx







  and sin( ) 0mx dx








 ? 

 
Answer: Think area under these functions over a single cycle. 

 
Therefore, the trig functions don’t appear: 
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(2) Second consider 
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The first integral is zero: 
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Case n m  for the 2nd integral. 
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Four pieces are present, each having the form below with integer 0p  . 
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Case n m  for the 2nd integral. Over a full cycle or complete number of cycles 
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The symbol ij
  is called the Kronecker delta. 

 

What about cos( )sin( )nx mx dx






 ? 

 
Since we have a product of an even function and an odd one over a symmetric interval 
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Getting back to our consideration of ( ) cos( )f x nx dx
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(3) Third consider 
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A similar analysis as we did for the cosine leads to 
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All has been derived! 

 
R2. Series Example: The Square Wave. 
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Since the above square wave is an odd function, the 0
a  and n

a  integrals are zero. The n
b  

integral is the one that will give nonzero values. 
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For even 2n k , where 1,2,3...k   
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R3. Fourier Transform. 

Remember our wave packet 
( )

( , ) ( )
i kx t

x t A k e dk
 

  ? 

 

Watch these math steps that will lead to an integral like ( )
ikx

A k e dk . 
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Now consider the above n
c  definitions with 
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Therefore, for all n , positive, negative, or even zero, the following works. 
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For notational purposes, rewrite the above with a new z-variable and g(z). 
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Then expand the interval by a transformation of variables. 
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This leads us to 
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We can write these as follows. 
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It is time for some "theoretical physics" magic. Note that this chapter is not meant to be super 
mathematically rigorous, as physics usually never is. Our focus here is trying to understand 
where the Fourier transform comes from rather than just giving it to you. 
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Let ( )
n

Lc c k . With the new variable k  now a continuous variable, 
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The variable k  has become a continuous variable and we have replaced the sum with an 
integral. The three things we did: 1) replace delta k with dk, 2) "rip off" the n from the c and 
introduce c(k), and 3) turn the summation sign into a "snake" where we integrate over all k since 
our sum did that for the discrete case. 

 
What about our other equation? 
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With our new variable we have 

1
( ) ( )

2

L
ikx

n
L

Lc c k f x e dx





   . 

 
Summary: 
 

1
( ) ( )

ikx
f x c k e dk






   

 
 

1
( ) ( )

2

ikx
c k f x e dx





   

 
We will adopt the following convention for defining the Fourier Transform. Our convention will 
involve a symmetric definition, but you do not have to things this way. The convention we will 
use is to define  
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The result is the symmetric equations below. 
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The function ( )F k  is called the Fourier transform of ( )f x  and ( )f x  is the inverse Fourier 

transform of ( )F k . 

 
Some authors write the Fourier transform with the following notation. 
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R4. Transform Example: Rectangular Pulse. 
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The sinc function is defined as 
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Now it’s time to remember L’Hôpital’s rule (also L'Hospital's rule). 
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Applying L’Hôpital’s rule, 
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The sinc(x) function is compared below to cos(x). 
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