Modern Optics, Prof. Ruiz, UNCA Chapter Q. The Laplacian

HW Q1. The Electric Field.

In the second semester of introductory physics with calculus the uniform sphere of charge with total charge Q and radius R is usually addressed. The charge density is

$$\rho = \frac{Q}{(4/3)\pi R^3}$$

(a) Use Gauss's law to show that the electric field for r > R is

$$\vec{E}_{out}(r) = \frac{Q}{4\pi\varepsilon_0 r^2} \hat{r}$$
, and that it can be written in the form $\vec{E}_{out}(r) = \frac{\rho R^3}{3\varepsilon_0 r^2} \hat{r}$.

(b) Use Gauss's law to show that the electric field for r < R is $\vec{E}_{in}(r) = \frac{\rho}{3\varepsilon_0} r r$.

Note that
$$\vec{E}_{in}(R) = \vec{E}_{out}(R) = \frac{\rho R}{3\varepsilon_0} \hat{r}$$

(c) Calculate $\nabla \cdot \vec{E}$ for r > R.

(d) Calculate $\nabla \cdot \overrightarrow{E}$ for r < R .

(e) Explain your answers to (c) and (d) in light of the Maxwell equation $\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$

Note: For full credit all equations must have correct notation, e.g., vector quantities need to have arrows above them or carats for unit vectors, and a vector equation must have vector signs on each side of the equation. Exception: zero does not need a vector sign over it.

HW Q2. Poisson's Equation. Consider cylindrical coordinates defined with the notation as shown in the figure, i.e., (r,ϕ,z) . You will see there a long cylinder which you can take to be infinite in length along the z-axis. It has radius r = a and charge density $\rho(r) = \beta r$.

The following equations, one of which includes the Laplacian, describe the physics of the electric potential V and electric field **E**.

$$\vec{E} = -\nabla V$$

$$\nabla \cdot \vec{E} = \nabla \cdot (-\nabla V) = -\nabla^2 V$$

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \implies \nabla^2 V = -\frac{\rho}{\varepsilon_0}$$

(a) Solve Poisson's equation (the one with the Laplacian) in the charge region using cylindrical coordinates to obtain the following with integration constants A and B.

$$V_{\rm in}(r) = -\frac{\beta}{\varepsilon_0} \frac{r^3}{9} + A \ln r + B$$
, where "in" refers to $r \le a$. Out means $r \ge a$.

(b) Give a physics reason why the integration constant A should be taken to be zero. Then take the negative gradient of your potential to find $\vec{E}_{in}(r)$. Integrate the charge density to find the total charge Q for a section of length h of the cylinder having the full radius r = a. Then divide by h to find the linear charge density $\lambda = \frac{Q}{h}$ in terms of a and β . You can check your answer by plugging your λ into the classic electric-field formula for a line of charge: $\vec{E}_{out}(r) = \frac{\lambda}{2\pi\varepsilon_0 r}\hat{r}$. Your answer is most likely correct if your $\vec{E}_{in}(a)$ matches $\vec{E}_{out}(a)$.

Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License