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Forward 
  

   

The Physics of Sound and Music is written 

for a general-education science course at the 

University of North Carolina Asheville (UNCA). 

There are no prerequisites for this course. If you 

know how to balance your checkbook (most of 

the time), you know enough mathematics to 

understand this text. 

PHYS 102 The Physics of Sound and Music 

has been taught at UNCA since the early 1980s. 

It was developed by the author for the general 

student not majoring in science. However, any 

student may take the course. Originally the 

course was patterned closely after a similar one 

developed at the University of Maryland by 

Richard E. Berg in the 1970s. The author 

worked as a teaching assistant for Prof. Berg at 

that time. Since then, the course at UNCA has 

evolved into a course of its own. 

In the 1970s, music synthesizers were very 

expensive. A company, PAIA Electronics, began 

making synthesizer kits. UNCA acquired one of 

these around 1980. This old synthesizer was 

never really suitable for performance; however, 

it served for many years as a source for 

excellent demonstrations to illustrate sound. 

The course now features applets that 

illustrate the physics of sound synthesis in 

remarkable ways. The added advantage here is 

that you get to play with the "toys" from home! 

The UNCA lectures that developed around 

the modular synthesizer have been published in 

The Physics Teacher. The synthesizer takes a 

central position in our course. Legendary Bob 

Moog (1934-2005), one of the independent 

inventors of the synthesizer lived in Asheville 

for the last quarter century of his life. He had 

many interactions with Music at UNC Asheville 

and one year he taught a physics course. 

 The Physics of Sound and Music and its 

sister course, PHYS 101 Light and Visual 

Phenomena, are two of the most popular science 

classes at UNCA. Sound was written up in the 

school newspaper in 1987 ("Sounds of Music," 

The Blue Banner, December 10, 1987, p. 3) and 

Light was featured on WLOS, Evening News, in 

1989. 

Then in Fall 2002, the uses of computer 

technology in these courses and our astronomy 

course were featured on CNN with anchor Ann 

Kellan We made top story in technology over 

the August. 31, 2002 weekend. A 5-minute 

piece was aired throughout the world on the 

program NEXT@CNN. You can view the video 

at our website. 

You will develop through this text and the 

supplemental material at our website an 

understanding of sound and its applications in 

our daily lives. You will also acquire an 

appreciation of the beauty of science and an 

integrative understanding of science across 

many disciplines. 

The author is a theoretical physicist 

(elementary particles) with a Ph.D. from the 

University of Maryland in 1978. He is also a 

musician. He studied classical piano under 

Stewart Gordon and jazz piano under Ron 

Elliston, at the University of Maryland in the 

1970s. He has composed three piano concertos, 

one for each of his children. All three children 

have performed these concertos with the 

Winston-Salem Symphony. 

The author is also a software developer. He 

and his son Evan designed a unique course web 

management system for this course. You will 

need regular access to the internet in order to 

experience this state-of-the-art learning 

adventure. All your assignments are done 

online. 

The author received the 1995 UNCA 

Distinguished Teacher Award, the 1997 UNCA 

Distinguished Teacher Award in Natural 

Sciences, and the 2004 Board of Governors 

Teaching Award He is a former Chair of the 

UNCA Department of Physics (1980-2000). 
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A. What is Sound? 
 
Physics, of course, is considered by 

many to be inaccessible due to its 
emphasis on mathematics. This text 
counteracts by presenting physics within 
the context of a broad cultural background, 
using concepts, diagrams, and tables 
instead of obscure math. We will illustrate 
this liberal-arts approach with our reflection 
on the inquiry "What is Sound?" This 
question draws many responses, 
depending on your point of view. To a 
musician, the answer includes pitches, 
harmony, and beauty. Musical tones serve 
as a palette for the artist to compose.  

A building inspector often looks at sound 
in terms of its loudness or sound level. Our 
campus physical plant manager has a 
meter to check if sound levels are within 
specifications for office areas, classrooms, 
and hallways. A biologist studies living 
organisms and examines the structure of 
the ear, our detector of sound. 

Psychologists investigating perception 
are interested in how the brain perceives 
sound. A physicist pays attention to the 
physical manifestations of sound such as 
the vibration of air. A philosopher may 
ponder the interesting question "Is there 
sound if a tree falls in a forest and no one is 
present to hear it?" 

This text presents sound in both its 
physical context and its connection to a 
variety of disciplines. We can place any 
subject such as music or biology in the 
center of a diagram and show the 
connections to other fields. We will place 
physics in the center since this text uses 
physics as a foundation in our study of 
sound and its applications. Physics is also 
the fundamental discipline that deals with 
basic physical quantities in our world. It is a 
good place to start in our study. It will pave 
the way for our understanding of sound. 

 
Fig. A-1. Major Fields Dealing with Sound. 
 

 
 

In Fig. A-1 above, the major fields that 
involve sound are listed. Physics deals with 
the fundamental physical world and is 
concerned with basic aspects such as 
matter, energy, and their relationships. The 
subfield of physics that focuses on sound is 
acoustics. However, acoustics usually 
means room acoustics so we will stick with 
physics. The three related areas in the 

upper part of Fig. A-1, biology, psychology, 
and audiology, include human detection 
and perception of sound. Audiology deals 
with hearing loss and methods to evaluate 
such loss. Reading clockwise, the three 
fields in the lower part of the figure are 
music, electronics, and computers. An 
important ingredient of these fields is the 
production of sound. Physics describes 
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sound by looking at physical characteristics. 
These are features that can be measured 
and assigned numbers. You should not feel 
intimidated about the use of numbers. You 
use numerical values to describe your own 
physical features. A number describes your 
height, another your age. We begin our 
study of sound in the realm of such 
descriptions.  

Since sound interacts with the ear, we 
will turn to the study of biology at some 
point. Sound is perceived by the brain, 
which brings in the psychology of 
perception. The perception of pleasant 
harmonies takes us into music. You will 
learn about consonance, the pleasant 
combination of sounds, and dissonance, 
unpleasant sounds. However, these are to 
some extent subjective. Modern music 
often breaks away from traditional 
harmonies and introduces more 
dissonance. 

In recent generations and today, we see 
the marvelous reproduction of sound with 
records, tape decks, and CDs. In the 
1950s, with the improvement of records, the 
description of excellent sound reproduction 
was often called hifi (a word coined in 
1950), meaning high fidelity (1934). One 
would often refer to one's home sound 
system as the hifi, and later as the stereo 
for the overall description of a sound 
system. 

The reproduction of sound requires the 
use of electronics. We will a little basic 
electronics without detailed math. You will 
learn how to read simple modular 
synthesizer block diagrams. Once again, 
physics will be important to our 
understanding. There are only a very few 
fundamental laws of physics, from which all 
of these great technological innovations 
come. You will find that symbols and neat 
diagrams will be very powerful in describing 
electronic inventions such as the speaker, 
microphone, record player, and tape deck. 

The sociologist Alvin Toffler (1980) 
wrote in his book The Third Wave that there 
have been three major technological 

revolutions throughout history. These are 
the Agricultural Revolution (beginning about 
10,000 years ago), the Industrial Revolution 
(beginning in the 1700s), and a Third 
Revolution that began in the middle of the 
20th century. This third wave of change 
involves information: the computer, 
microelectronics, genetic engineering, etc. 

A common thread of third-wave 
technology is the application of microscopic 
science. We can correlate the three major 
historical waves of technological change 
with the development of sound production 
(Table A-1). 
 
Table A-1. Historical Overview of Sound 
Production. 
 

1. Voice 
 

Speech, Song 

2. Musical 
Instruments 

Strings, Pipes, and 
 Membranes 

3. Synthesizers Electronics and 
 Computers 

 
In agricultural settings we find speech 

and song. We also find simple instruments. 
Traditional orchestral instruments reach a 
peak in the industrial age that began to 
flourish during the 1800s. Here we have the 
big orchestras and concert halls. 

Musical instruments use strings, pipes, 
and membranes in their constructions. In 
the early 1960s, the music synthesizer was 
invented. One of the key inventors was Bob 
Moog, who spent most of the last quarter 
century of his life in Asheville, NC. This is 
part of the third-wave of musical sound 
production. Then, in the 1980s, a standard 
was set that allows for the computer to 
control music synthesizers. This standard is 
called MIDI, which stands for Musical 
Instrument Digital Interface. 
 
Sound as Vibration 
 

When we hear anything, our eardrums 
vibrate back and forth very rapidly. It is 
possible to bypass the eardrum by allowing 
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vibrations to pass through our bones, but 
these are still vibrations. Thinking of a 
vibrating eardrum gives us insight into the 
physical properties of sound. The eardrum 
responds to vibrations in the air. 

The air vibrates in the first place due to 
a source of sound. Energy at the source is 
used to make the vibrations, which then 
travel through the air to reach our ears. 

We can summarize this by saying that 
there is a source or speaker making 
vibrations, a medium such as air through 
which the vibrations travel, and a detector 
or hearer that receives the vibrations. 
Figure A-2 provides us with this summary. 
 
 

 
 

We can now revisit the question "Is 
there sound if a tree falls in a forest and no 
one hears it?" This question came up in the 
July 17, 1995 issue of Time magazine, 
where the cover story was on the mind and 
consciousness. The comments of a 
neuroscientist working at New York 
University Medical School, Dr. Rodolfo 
Llinás, are as follows. 

"Light is nothing but electromagnetic 
radiation. Colors clearly don't exist outside 
our brains, nor does sound. Is there sound 
if a tree drops in the forest and no one 
hears it? No. Sound is the relationship 
between external vibrations and the brain. If 
there is no brain, there can be no sound." 

Rodolfo Llinás, MD, New York University 
Medical School, quoted in "Glimpses of the 
Mind" by Michael D. Lemonick, Time, July 
17, 1995, p. 44. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The good doctor's analysis drew the 
following strong negative response from a 
reader. 

"You quote neuroscientist Dr. Rodolfo 
Llinás as saying colors and sound don't 
exist outside our brains, concluding that if a 
brain doesn't perceive color and sound, 
then they don't exist. He was using the 
famous metaphor of a tree falling in the 
woods with no one around to hear it. I 
couldn't disagree more with Llinás' 
conclusion. Light is the energy given off by 
a heated or excited object in the form of 
photons. 

“Sound is the vibration of molecules in a 
medium caused by an object. Just because 
there are no receivers around to pick up the 
light and sound does not mean they don't 
exist. When a tree falls in the woods, it hits 
the ground and vibrates the air and ground. 
That vibration of the air molecules is, by 
definition, sound. There is sound present, 
just no receptors to hear it. If I cannot hear 
my favorite radio station's broadcast, it 
doesn't mean that its radio waves don't 
exist; it just means that my radio is off.” 
Greg Serrano, Lansing, Michigan, Via E-
mail. Letters to the Editor, Time, August 7, 
1995, p. 7. 
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 The way out of this dilemma is to note 
that if sound is defined as "the relationship 
between external vibrations and the brain," 
then you obviously need a brain for the 
sound to be present. On the other hand, if 
sound is defined solely as "vibration of the 
air molecules," then you do not need a 
brain. 
 Consider a strictly perceptual definition 
of sound, i.e., if you hear the sound in your 
head, sound has been experienced. 
However, there may have not been an 
external object making the sound. The 

strictly physical definition calls for external 
vibrations only. If the tree falls, there are 
physical vibrations in the air. So there is 
sound, whether someone hears it or not. 

A third definition of sound includes both 
external vibrations and a perception of 
these vibrations. Table A-2 lists two 
questions and answers from these three 
different viewpoints. Which of the pairs of 
answers below would our medical doctor 
agree with? Reread his quote on the 
previous page if necessary. 

Table A-2. Different Viewpoints on the 
Existence of Sound. 
 
A Tree Falls in the Forest, But No One is 
There to Hear It. Is there sound? 
 

Physically 
 

Perceptually Both 

Yes 
 

No No 

 
A Hearer Hallucinates a Tree Falling, But 
No Tree is There. Is there sound? 
 

Physically 
 

Perceptually Both 

No 
 

Yes No 

 
 
The Medium 
 

According to the viewpoint of physics, 
we have sound as long as we have a 
source of sound and a medium to transport 
these vibrations. We do not need a hearer. 
However, the medium is important. There 
would be no sound coming from an 
astronaut shaking a hand bell in outer 
space. See Fig. A-3. The structure of the 
bell would vibrate, but the vibrations would 
have no way of leaving the bell. 
 
 
Fig. A-3. Astronaut Shaking a Hand Bell in 
Outer Space. 

 
No sound vibrations would be able to 

travel through the emptiness of outer 
space. However, we would be able to see 
the astronaut and the bell. Light can travel 
through the near vacuum of outer space. 

The laboratory version of shaking a bell 
in outer space involves pumping the air out 
of a container. We do not hear sound from 
the bell. This demonstration is often 
referred to as the bell-jar demonstration 
(see Fig. A-4).   
 
Fig. A-4. Hand Bell in Vacuum Jar. 

 



Copyright © 2012 Prof. Ruiz, UNCA A-5 

 
For good results, the bell must hang 

from the glass in such a way that sound 
vibrations are not permitted to pass directly 
from the bell to the glass. Also, a vacuum 
must be nearly achieved; otherwise, a faint 
sound will be heard. 

The bell inside the glass jar can be seen 
even when the air is pumped out. We 
expect this result since light can travel 
through vacuum. That's how we get light 
from the sun. It is also how we can see the 
moon and the stars at night. 

In conclusion, sound needs a medium in 
which to travel. The vibrations from a 
source of sound vibrate the surrounding 
medium and the sound travels through this 
medium. The medium is usually air. 
However, the medium can be a different 
gas. The medium can also be a solid. You 
can usually hear sound from another room 
by placing your ear up against a wall. 

Sound also travels under water. A 
simple experiment to demonstrate that 
sound travels in water is shown in Fig. A-5 
where a watch alarm is heard through a 
glass of water. 
 
Fig. A-5. Watch Alarm in Glass of Water. 
 
 
 
 
 
 
 
 
 
 
 
The Speed of Sound 
 

Sound travels fast, but not so fast that 
we can't easily get a handle on its speed. If 
you ever heard an echo, you have 
experienced the finite speed of sound. 
Suppose you shout and a short time later 
hear your echo. The sound has traveled 
from your mouth, through the air, bounced 

off some large object, and returned to you. 
The speed of sound can be determined if 
you know the distance the sound traveled 
and the time. 

You can determine the speed of a car 
going to Raleigh if you are given the 
information that the distance from Asheville 
to Raleigh is 250 miles and the trip takes 5 
hours. The answer is 250 miles per 5 hours, 
or simply 50 miles per hour. This is an 
average time because the car does not 
maintain exactly 50 miles per hour at every 
moment. That's because you are driving 
and need to stop occasionally. You also 
need to vary your speed in traffic. Sound 
doesn't have to worry about such things. If 
the air is calm with the same temperature 
and pressure everywhere, sound travels at 
a faithful speed. 

In science, we do experiments to see 
how the world works. So far, we have seen 
an experiment with a bell jar to examine if 
sound needs a medium to travel. We saw 
another experiment with a watch in water to 
determine if sound can travel in water. You 
may have had a direct experience of 
hearing sound underwater. If so, this counts 
as an experimental observation. You should 
have a distrust of information, even that 
given in this text, unless it can be supported 
by an observation, demonstration, or 
experiment. 

This is a healthy scientific attitude. 
Science employs models that describe the 
real world. These models are based on 
observation. The scientific method includes 
hypotheses (which may or may not be 
based on the currently accepted model) 
and experiments to test these hypotheses. 
Science then consists of two components: 
theory and experiment. Each must support 
the other. If not, the theory or model is 
discarded for a better one. A theory that 
has withstood countless experiments can 
be considered a law. However, history has 
shown us that even the best theories or 
laws need to be modified from time to time. 
We now proceed to an experiment in order 
to measure the speed of sound. 
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Speed is defined as how far you go per 
some time interval like an hour or second. 
For example, 60 miles per hour, which we 
usually write as 60 mi/h in physics rather 
than 60 mph, is also 1 mi/min (i.e., 1 mile 
per minute). Whenever you see the symbol 
"/," just read it as "per." Abbreviations in 
science do not have periods, except for 
inches (in.). 

Once we agree on our definition for 
speed, we can apply it to sound. The "echo 
technique" to measure the speed of sound 
requires a source of sound and an obstacle 
to reflect from. Our scientific instrumenta-
tion includes a measuring device to 
measure the distance and a watch to 
measure the time. 

UNCA Convocation, an event held at 
the start of the academic year since the mid 
1980s presents an excellent opportunity to 
measure the speed of sound when they 
hold it outdoors in front of the library. 

Convocation is a ceremony to show 
incoming students that UNCA is a serious 
institution of higher learning. The faculty 
often dress in academic regalia, there is a 
procession, and speeches follow. As the 
decked-out faculty march, students are 
often dressed in T-shirts and shorts. 

During the first year, some played 
Frisbee, creating a surrealistic setting. Also, 
someone in the distance had a radio 
playing rock music in competition with the 
serious processional music. 

In the 1980s, the faculty often sat up 
near the library doors, like they do at 
graduation. If the public address sound 
system is positioned correctly near the 
steps of Ramsey Library, you get excellent 
reflections off the Administration Building 
across the Quad. 

One year in the 1980s, the author was 
getting bored with the speeches and 
wanted to amuse himself. He noticed that 
during the Chancellor’s speech, a faint echo 
could be heard. He used his digital watch to 
measure the time between the Chancellor's 
words and the associated echoes. With a 
little practice, the echo time was measured 
at 0.8 s, i.e., 4/5 of a second. The author's 
watch has a chronograph that measures 
100ths of a second. However, due to 
human response time and uncertainties in 
distances, rounding off to the nearest 10th 
of a second is appropriate. The author was 
grateful to get such good data in the 1980s, 
because now, Convocation is usually 
elsewhere and the current Chancellor is 
never boring. 

If you would like to do a similar 
experiment, you may be able to find a place 
where a delayed echo occurs. If not, you 
can always try it at graduation during the 
commencement address. Fig. A-6 gives a 
layout of the experiment. The distance from 
the Administration Building to the Library is 
about 450 ft (i.e., 450 feet). 
 

 
Fig. A-6. Measuring the Speed of Sound. 
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Sound must travel from the Library to 
the Administration Building and back again 
before we can hear the echo return to the 
Library. The total distance traveled is 
therefore 2 x 450 ft = 900 ft. Therefore 
sound travels 900 ft in 0.8 s. We know 
immediately that the answer is 
approximately 900 ft/s (900 feet per 
second) or about 1000 ft/s since 0.8 s is 
nearly one second. 

The actual result is worked out below 
using 0.8 s. The trick in dealing with the 
decimal is just to note that if you go 900 ft in 
0.8 s, you go 9000 ft in 8 s (which is 10 
times longer). We then divide to get the 
result per second. We round off at the end 
because our data is just not that accurate. 
The conclusion is that the speed of sound is 
1100 ft/s. 

 

 
Or reduce by halving numerator and 
denominator again and again: 9000/8 = 
4500/4 = 2250/2 = 1125. Think money: half 

of $9000 is $4500 and half of $4500 is 
$2250. Your mind will work faster. 

 
------------------------------ 

 
Mach Speed 
 

In Fig. A-7 we compare modes of 
transportation with the speed of sound. The 
Mach scale is used, where the speed of 

sound is Mach 1. Mach 0.5 indicates 1/2 
sound speed (i.e., 50%). 

 
Fig. A-7. Modes of Transportation and Sound Speed. 
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The Mach speed is defined in terms of 
the speed of sound at a given altitude. The 
speed of sound depends on the 
temperature and pressure of the air, which 
varies with altitude. For example, the speed 
of sound at freezing temperature is 3% 
lower than that at room temperature. We 
can loosely define "Mach 1" as the speed of 
sound at room temperature and pressure, 

ignoring this technicality. This is often done 
today when one refers to the speed of the 
space shuttle. Strictly speaking, since 
sound doesn't travel in outer space, Mach 
speed cannot be applied there. However, if 
we take "Mach 1" to be the fixed value of 
1100 ft/s, then we can assign speeds in 
outer space a Mach value (refer to Fig. A-
8). 

 
Fig. A-8. "Mach" Values Assigned to Speeds in Outer Space. 
 

 
 
 
Exceeding the Speed of Sound 
 

From the past section we know that the 
speed of sound can be exceeded. 
However, in the 1930s and 1940s there 
were debates as to whether an aircraft 
could travel faster than the speed of sound. 
Engineers anticipated instabilities. One 
began to talk about the sound barrier due to 
the difficulty in moving faster than the 
vibrations you generate. We will look at a 
simple model for this shortly. 

Sound speed is fast, 1100 ft/s. This is 
also about 750 mi/h. In the metric system, 
sound speed is 340 m/s (340 meters per 
second). The metric system is the official 
system of units used by the scientific 
community throughout the world. Most of 
your work in this course will involve the 
metric system. 

Think of a meter as being slightly longer 
than a yard. Sound speed is therefore 
roughly 340 yard/s, or approximately 3 
football fields per second. Imagine how long 
it takes to run across a football field. Now 

imagine covering 3 football fields in one 
second. Or imagine going from the Library, 
across the Quad to the Administration 
Building, and back to the Library, in about 
one second. If you can imagine this, you 
have a good feeling for the actual speed of 
sound. 

Humans exceeded the speed of sound 
in the late 1940s. Today, we are 
accustomed to hearing about supersonic 
aircraft. The word supersonic refers to 
speeds faster than the speed of sound. The 
word entered our vocabulary in the 1920s. 
Supersonic can also refer to pitches that 
are too high for us to hear. So the word 
refers to two different concepts. 

The "sound barrier" was broken on 
October 14, 1947 by Captain Charles E. 
Yeager of the US Air Force in the X-1. This 
experimental rocket plane was dropped out 
of a larger aircraft (a B-29) in flight. The 
designation X referred to experimental 
aircraft. During the next decade, breaking 
the sound barrier became commonplace in 
the X-series of research aircraft. The last 
aircraft of this type was the X-15, which was 
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introduced in 1959. It was dropped out of a 
B-52 Bomber. One X-15 reached an 
incredible Mach 6.7 during the 1960s. 

As early as 1962 Great Britain and 
France began plans for a supersonic 
commercial aircraft. The year 1958 saw the 
first use of commercial jets (US), and in 
1970 the wide Boeing 747 jet began flying 
(US). The US was also developing a 
supersonic commercial jet, but in 1971, 
Congress cut off funding. Concerns 
included noise and air pollution, and danger 
to the ozone layer. The ozone layer 
protects us from harmful ultraviolet light. 

The Russians developed a supersonic 
transport (SST) which began carrying 
passengers in 1975. It was discontinued in 
a few years. England and France began 
operation of the Concorde in 1976, which 
continued until it was retired in 2003. 

The Concorde cruised at about Mach 2 
at 18 km (about 12 miles or 60,000 ft). At 
this speed, it crossed the Atlantic in little 
over 2 hours. The Concorde flew into the 
Asheville Airport once. 

Since more and more people need to fly 
long distances, in the early 1990s the US 
once again began working on SST projects. 
But this was discontinued in 2000 due to 
the expense involved. 

The engineers had been working to 
lower noise pollution and reduce the risk to 
our ozone layer. However, there is no way 
to prevent the "sonic boom." When the 
sound barrier is broken, a loud boom is 
generated. Observers on the ground hear it 
once as the aircraft passes overhead. 
Echoes of the boom can be heard if 
mountains are nearby. We turn now to this 
very interesting phenomenon. 
 
The Sonic Boom 
 

In order to understand the "sonic boom" 
we look for a model or an analogy. What is 
similar to an aircraft generating vibrations in 
a medium? One answer is a boat 
generating disturbances in water. These 
disturbances are waves: the water surface 

moves up and down as waves travel. 
Although water waves have some marked 
differences with sound vibrations in air, the 
analogy can give us a general idea of what 
is going on. Later we will learn the 
difference between water waves and sound 
waves. 

Fig. A-9 illustrates a motorboat traveling 
faster than the waves. The boat drags the 
waves with it in a "V" formation. This "V" 
represents a large wave crest since the 
dragging waves build up. This "V" becomes 
narrower if the boat goes even faster. 
Someone in the water will experience a 
"jolt" as the large wave passes by. This 
"water jolt" is analogous to our sonic boom. 
Note that an observer treading water 
experiences this "jolt" once, as the "V" 
passes by. 

 
Fig. A-9. Motor Boat Exceeding the Speed 
of Water Waves, Dragging the Waves 
Behind It. 

 
Fig. A-10 illustrates an aircraft 

exceeding the speed of sound. The 
supersonic jet drags the sound waves along 
with it. It does this because it is traveling 
faster than the sound waves. 
 
Fig. A-10. Supersonic Aircraft Exceeding 
the Speed of Sound, Dragging the Sound 
Waves Behind It. 
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Note that the "V" of the boat is now 
replaced by a "cone." This is due to the fact 
that the jet flies through the air while the 
boat travels on the surface of the water. 
The case for the boat is a two-dimensional 
phenomenon, while the case for the jet is a 
three-dimensional effect. 

The "cone" sweeps over observers on 
the ground. When it does so, the observers 
experience the large wave as a loud boom, 
the sonic boom. This large wave is also 
called a shock wave. The boom is only 
heard once for each observer. After one 
observer hears it, then another observer 
down the road hears it as the jet passes by 
this second observer, and so on. 

The space shuttle makes such a sonic 
boom as it returns to the ground from Earth 
orbit. Why isn't there a sonic boom when 
the space shuttle is in orbit, even though it 
is traveling at "Mach 20"? 

Another thing to consider is the whip. 
The tip of a whip of a cowgirl can exceed 
the speed of sound. The crack of the whip 
is actually a baby sonic boom. 

There is a speed limit in the universe. It 
is obviously not the sound barrier. It is the 
light barrier. Einstein's Theory of Relativity 
states that there is a speed limit in the 
universe as a law of nature. This speed is 
300,000 km/s (186,000 mi/h), the speed of 
light. Light speed is so fast that light 
appears to instantly arrive whenever it 
travels. It is beyond the scope of this text to 
delve into this mystery. 

 
 
 
 
 
 
 
 
 
We can use the fact that light travels so 

fast to estimate how far storms are away 
from us. The lightning and thunder occur at 
the same time, but the light travels to us 
almost instantly. We start counting and wait 

for the thunder. How many seconds do you 
have to count for a storm one mile away? 
Hint: One mile equals 5280 ft, i.e. about 
5000 ft. Sound speed is roughly 1000 ft/s. 

 
 
Condensation Cloud. Dramatic conical 
shape cloud formations can occur when 
planes travel near Mach 1 due to complex 
pressure variations and rapid condensation. 
This is not a sonic boom. See the F-18 
(Hornet) below. 
 
Fig. A-11. F-18 and Condensation Cloud. 
 

 
Courtesy United States Navy 

 
Simple Harmonic Motion 

 
Before we leave this chapter we would 

like to get a better understanding of sound 
vibrations or waves. Just what are they? 
How can we draw a picture of a vibration? 
Let's consider a simple system for 
generating sound. You pick up a guitar and 
pluck the string. The string vibrates rapidly 
back and forth. The string's vibrations 
cause the surrounding layers of air to 
vibrate. These vibrations are in step with 
the vibrations of the string. The vibrations 
are transmitted through the air and reach 
our ears. Our eardrums vibrate in step with 
the vibrations of the air. 

Strings are part of nature and vibrate in 
a most natural way. But since the string 
vibrates so fast, we will use another 
vibrating system to get a handle on natural 
vibrations. You. Since you are part of 
nature, and a "natural" person, you should 
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be able to shake in a natural way. Take 
your hand and wave it up and down. Be 
natural. You will not hear any sound unless 
you can shake your hand up and down 
about 20 times a second. Probably not. But 
you can see your hand move. If you were to 
walk across a blackboard moving your hand 
up and down with a piece of chalk in it, you 
would trace out something like Fig. A-12 on 
the blackboard. 

This simple or natural wave is called a 
sine wave. The distance from one peak to 
the next is called the wavelength. The 
wavelength is designated by the Greek 

letter lambda, written as . Note the natural 
way the wave rises and falls. The natural 
type of vibrational motion that generates 
such a wave is called simple harmonic 
motion.

 

Fig. A-12. Simple or Sine Wave with Wavelength . 
 

 
 

The number of times you shake your 
hand back in forth per second is called the 
frequency. There is nothing special about a 
second. The number of times you shake 
back and forth per minute is also a 
frequency. Shaking once per second is 
equivalent to shaking 60 times per minute. 
The key idea is to count the number of 
cycles or times you shake during some 
designated time interval. Be careful that you 
count up and down as one cycle and not 
double count. A complete cycle takes you 
up and down. 

We are now ready to observe an 
interesting phenomenon. If you shake your 

hand more rapidly and walk across the 
blackboard, the wiggles are spaced closer 
together; i.e., the wavelength is shorter. If 
you shake your hand less rapidly, the 
wiggles are spaced farther apart; i.e., the 
wavelength is longer. Shaking more rapidly 
means the frequency is greater. We say the 
frequency is higher. 

This is heard as a higher pitch if the 
frequency is within the range of human 
hearing. Shaking less rapidly implies a 
lesser or lower frequency. These observa-
tions are summarized in Fig. A-13. 

 
Fig. A-13. Relationship Between Frequency and Wavelength. 
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Fig. A-14. Sine Wave on an Oscilloscope.   
The oscilloscope is an electronic device that 

shows us a picture of a sound wave much like the 
way the blackboard shows a picture of your hand 
wave. A microphone converts the air vibrations to 
electrical vibrations. The oscilloscope (or scope) 
sweeps out the picture, performing the electrical 
analog of tracing the wave on the blackboard. 

We can use an oscillator in a music 
synthesizer to generate a wave for us 
electronically. These can be monitored with an 
oscilloscope. They can also be sent to a speaker, 
where the electrical waves become mechanical 
as the speaker membrane vibrates. 
 
 

 
------------------------------ 

 
 

The moving membrane creates sound 
waves in the air. We can call these 
acoustical waves, where air is implied. 
Technically, these are also considered 
mechanical by engineers. When the waves 
reach our ears, an interesting sequence 
occurs, just the opposite as before. 

The sound waves enter the ear canal as 
acoustic waves in air. These waves cause 
the eardrum to vibrate, converting the 
oscillations to mechanical vibrations on a 
membrane. Finally, these mechanical 
vibrations are converted to electrical signals 
in the inner ear. The brain receives 
electrical information. So we begin and end 
with electrical information. This sequence is 
listed in Table A-3. 

Table A-3. Different Forms of Energy as a 
Signal Travels from a Synthesizer to Our 
Ears. 
 

Energy 
 

Location 

Electrical 
 

Circuit 

Mechanical 
 

Speaker 

Acoustical 
 

Air 

Mechanical 
 

Eardrum 

Electrical 
 

Inner Ear/Brain 

 
Two Examples of Simple Harmonic 
Motion 

 
Finally, consider the motion of a 

pendulum and a mass attached to a spring 
(see Fig. A-15 below). These systems 
exhibit simple harmonic motion. 
Technically, the swing of the pendulum 
must not be too great for simple harmonic 
motion. The frequency of the pendulum and 

spring system depends on the string or 
spring length (shorter length for higher 
frequencies). The pendulum frequency 
does not depend on the mass of the 
swinging bob. All masses fall or swing at 
the same rate! However, the mass attached 
to the spring does affect the frequency of 
oscillation (lighter masses for higher 
frequencies). The stiffness of the spring is 
also relevant. Stiffer springs provide for 
higher frequencies of vibration. 
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Fig. A-15. Two Mechanical Systems that Exhibit Simple Harmonic Motion. 

 
 
Deciding if Motion is Simple Harmonic 
 

For your homework, you will be 
challenged to determine whether motion 
qualifies for simple harmonic motion. For 
example, is the up and down dribbling of a 
basketball by Michael Jordan simple 
harmonic motion?  

 
This question is equivalent to asking 

"Can the motion be described by a sine 
wave?" Consider the following when 
analyzing any motion for simple harmonic 
motion.  

 

 Is there a middle position where the 
object "would like" to be at rest? 

 

 Is there motion on either side of the 
middle position? 

 

 Do the fastest speeds occur at the 
middle position? 
 

The simplest mechanical configuration 
for harmonic motion is a system with a 
linear restoring force. This means that when 
the distance from equilibrium doubles, the 
force doubles. A force law of this kind is 

said to satisfy Hooke's Law. A spring is an 
excellent example of a linear restoring 
force. For such systems, periodic motion is 
harmonic. For more complicated systems, 
like waving your hand in class, the real test 
is to graph the motion. If you get a sine 
wave, the motion is harmonic.  

 
Do not worry if the harmonic motion 

eventually dies down. This is called 
damped harmonic motion and we will study 
it in the next class. You have to keep 
supplying energy to keep any motion going.  
Note that motion can be periodic and not be 
harmonic. We will encounter many 
waveforms such as the triangle, square, 
and ramp waves.  

 
A sure-bet way to tell if the motion is simple 
harmonic is to try to mimic or follow the 
motion with your hand moving up and 
down. Now stick a pencil in your hand, 
move your hand across a sheet of paper, 
and let your motion across the paper draw 
a picture of the movement you are 
investigating. This is called a trace. 

 
 
 
 
 
 
 

--- End of Chapter A --- 
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B. Vibrations 
 

In this chapter we will learn about 
different kinds of periodic waves. We have 
already seen the sine wave, which results 
from simple harmonic motion. We will 
characterize periodic waves in general. The 
concepts of frequency and wavelength will 
still apply. We will then compare the 
physical characteristics of periodic waves 
with perceptual ones. How do different 
periodic waves sound? After this, we will 
see that no wave continues forever. Waves 
tend to die out; i.e., damp out. Energy must 
constantly be put into a system to maintain 
vibrations. We will see that driving a system 
at a special frequency gives the most 
efficient results. This is the subject of 
resonance. Resonance is very important in 
the design of musical instruments. It also 
has an analog in electrical circuits. It helps 

engineers design circuits that can respond 
to the least amount of energy. 
 
Complex Periodic Waves 
 

A periodic wave is any wave that 
repeats its pattern. Figs. A-11 and A-12 
illustrate examples of periodic waves. 
There, you see sine waves, the simplest 
type of periodic wave. A complex periodic 
wave is any periodic wave that is not a sine 
wave. So that's everything else, as long as 
it repeats. An example of a complex 
periodic wave is given below in Fig. B-1. 
We include horizontal and vertical reference 
axes to help us describe the wave more 
clearly. Another example of a complex 
periodic wave is found on the cover of this 
text. 

 
Fig. B-1. Example of a Complex Periodic Wave. 

 
 

The wavelength λ is the distance from 
any point on the wave to the place where 
the pattern begins to repeat. It is easy for 
us to take the beginning point where the 
wave meets the horizontal axis and slopes 
upward in Fig. B-1. However, any starting 
point can be taken. The frequency is the 
number of patterns or cycles made per 
second. 

Scientists like to use the second as the 
time interval. We will find this convenient 

since the sound we hear has frequencies 
easily expressed using this time unit. The 
amplitude is a measure from the horizontal 
reference (equilibrium) to the maximum 
point of the wave. The wavelength is 
measured in meters (m), centimeters (cm), 
or some other length unit of your choice. 
The metric system is simple since you only 
have to think in terms of 10, 100, etc. For 
example, the centimeter is 1/100 of a 
meter. This is better than having units like 
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the yard, which breaks into 3rds to get feet, 
each of which then has 12 equal divisions 

(inches). 

We will introduce metric units as we 
need them rather than hitting you with many 
at once. Often texts overwhelm the student 
with many metric units and then use less 
than half of them. You should not worry 
about learning all the metric units. The 
professional scientist doesn't know all of 
them either. 

Let's consider frequency. Frequency 
tells us how many cycles or patterns occur 
per second. As an example, consider a 
source vibrating 50 times per second. We 
can write f = 50 "cycles" per second (50 
cps), or f = 50 "cycles"/s. We can also write 
f = 50 "patterns"/s, 50 "vibrations"/s, 50 
"oscillations"/s. How about f = 50 
"wiggles"/s? 

Since we can't get agreement on just 
what to call the repeating "things," we just 
write f = 50 1/s. We read this as 50 per 
second. Call them whatever you like. By 
convention, 1/s (per second, where cycles, 
patterns, or vibrations are understood) is 
named after the physicist that discovered 
radio waves, Hertz. So now we can write f = 
50 hertz or f = 50 Hz for short. The lower 
case "h" is used when the word is written 
out as hertz and the upper case "H" is used 
when the unit hertz is abbreviated as Hz. 

The hertz is a metric unit. The metric 
system consists of special units that 
scientists agree upon such as the meter, 
second, and hertz. The metric system also 
contains a series of prefixes which 
represents the numbers 10, 100, 1000, etc. 
and 1/10, 1/100, 1/1000, etc. 

The prefix for 1000 is kilo, which can be 
abbreviated simply as "k." Therefore, one 
thousand hertz is simply kHz (a kilohertz). 
The hearing range for humans (rounded off) 
is from 20 Hz to 20,000 Hz (or 20 kHz). 
Another example is one hundredth of a 
meter, 1 cm (one centimeter). 

You see, the metric system is easy. 
Simply attach the appropriate prefix such as 
centi or kilo to the relevant unit such as 
meter or second. One thousand seconds is 
a kilosecond (ks). A hundredth of a second 

is a centisecond (cs). Some silly authors 
like to attach metric prefixes to anything 
they like, which technically is allowed. For 
example, one thousand lectures is a 
kilolecture. Two thousand mockingbirds is 
two kilomockingbird, i.e., To Kill a 
Mockingbird. 

Another physical parameter is the 
period. The period, designated by T, is the 
time it takes to complete one pattern or 
cycle. This depends on the frequency. If the 
frequency is f = 10 Hz (i.e., 10 1/s), what is 
the period? In other words, if you do 
something 10 times per second, how long 
does it take to do it once? The answer is 
1/10 second (0.1 s). If f = 5 Hz (i.e., 5 1/s), 
the period T = 1/5 s. Note that you simply 
flip the frequency to get the period. Flipping 
10 gives 1/10 and flipping 5 gives 1/5. Also 
note that the units flip: 10 1/s becomes 1/10 
s on the flip. Note that if you flip the period, 
you get the frequency back and vice versa. 
We summarize these relationships as 
follows: T = 1/f and f = 1/T. The 
mathematical name for this flip is reciprocal. 

It's convenient to learn the metric prefix 
for a thousandth, which is milli. The period 
for a 1000-Hz sound wave is 1/1000 s = 
0.001 s = 1 millisecond (or 1 ms). Let's do 
another example. 

Consider a 100-Hz sound wave. The 
period T is 1/100 s by flipping the 100 1/s. 
Therefore, T = 1/100 s = 0.01 s, just like 
1/100 of a dollar is $0.01. This answer is 
perfectly satisfactory. In order to convert to 
milliseconds, write the period as T = 0.010 
s. This is still one hundredth of a second; 
however, it is expressed as 10 thousandths 
of a second. So our period is 10 ms (10 
milliseconds). Another way to think of this is 
to move the decimal point three places to 
the right and you go from seconds to 
milliseconds in one sweeping step. 

Continue the analogy with money. 
Consider $10 and proceed slowly. One 
tenth of a 10-dollar bill is one dollar. One 
hundredth of $10 is a dime. One 
thousandth of $10 is a penny, as you need 
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1000 pennies to make $10. Now, 10 
pennies equals one dime; i.e., 10 
thousandths of $10 equals one hundredth 
of $10. Are you confused? If so, this is 
normal. So what you do is read it over 
again slowly and perhaps write some things 
down to help you visualize it. 
 
Perception of Periodic Waves 
 

We would like to relate the physical 
descriptions of the previous section with 
perceptual characteristics. There are three 
basic perceptual features of periodic waves 
to consider. 

1. Loudness. The easiest perceptual 
characteristic to investigate is loudness. 
The loudness of a wave is determined by 
the amplitude, as illustrated in Fig. B-2. 
However, the relationship is not simple. You 

can't say that if you double the amplitude, 
the sound is twice as loud. There is a good 
reason for this. If you want to be able to 
hear a whisper and a loud thunder crash, 
the ear has to be stubborn in perceiving 
loud sounds. It takes more than doubling 
the amplitude for the ear to be impressed. 
We will learn more about sound levels and 
loudness in a later chapter. The only thing 
we state here is qualitative: the greater the 
amplitude, the louder the sound. This also 
applies to non-periodic waves like 
explosions. 

Periodic waves are heard as steady 
tones. Although amplitude mainly 
determines loudness, other factors affect 
how loud sounds appear. Our ears are not 
uniformly sensitive to all frequencies, so 
some sounds may sound louder simply due 
to our sensitivity, especially to high tones. 

Fig. B-2. Amplitude and Loudness. 

 
 

2. Pitch. Different frequencies of 
periodic waves are heard as different 
pitches or tones. The higher the frequency, 
the higher the pitch. Notice that our earlier 
discussion of frequency, wavelength, and 
period showed that all three of these are 

related. So we can alternately, say that 
wavelength and pitch are related, where 
short wavelengths mean high pitches (see 
Fig. B-3). Or we can alternately say period 
and pitch are related, where short periods 
indicate high pitches. 

 
Fig. B-3. Frequency and Pitch. 
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3. Timbre. The timbre (TAM-ber) of a 
periodic tone is that quality which enables 
us to distinguish between the flute and the 
violin. These instruments may play the 
same pitch at the same loudness but we 
still hear a difference. The timbre (also 
spelled timber and also pronounced TIM-
ber if you like) is determined by the shape 

of the waveform. In fig. B-4 below you find 
the waveform for a sine wave and one for 
the complex wave we encountered earlier. 
Note that the amplitudes and frequencies 
are essentially the same. The sine wave 
however will sound pure and innocent while 
the complex wave will sound richer and 
harsher. 

 
Fig. B-4. Waveform and Timbre. 
 

 
 
 

The correlation between physical properties 
and perceptual characteristics helps us 
understand the connection between physics 

(acoustics) and psychology (perception). 
Table B-1 summarizes these results. 

 
 
Table B-1. Basic Relationship Between the Physics and Psychology of Sound. 
 
 

Physical 
 

Perceptual 

Amplitude 
 

Loudness 

Frequency 
 

Pitch 

Waveform 
 

Timbre 

 
 

Later we will learn about the decibel 
(dB) scale which ranges from 0 dB (a pin 
drops) to 140 dB (near a jet, which 
damages your ears). Actually, damage can 
occur in a machine shop with 90 dB. The 

range of frequencies we hear is from 20 Hz 
to 20,000 Hz, as noted earlier. Later we will 
also analyze complex periodic tones and 
learn more about timbre. 
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However, for now, let's look at some 
different waveforms. We will simply note 
their pictures. Five waveforms can be found 
in Fig. B-5 below. These have nice shapes 
and are easy to synthesize with electronics. 
The sine wave is the simplest waveform. It 
sounds the purest in tone. The others are 

arranged depending on how different they 
appear compared to the sine wave. Later 
we will learn precise justification for this 
order. The pulse train sounds the harshest. 
Try moving your hand in step with each of 
these and imagine your eardrum vibrating 
likewise in step. 

 
Fig. B-5. Five Different Waveforms. 
 

 
 

 
Damped Periodic Waves 
 

Unfortunately, oscillations die down 
unless there is new input of energy. If you 
start a pendulum swinging, its amplitude 
decreases as it swings until it eventually 
stops. The oscillations are said to be 
damped. Fig. B-6 below illustrates such 
motion. It is a plot of displacement (position 
away from the equilibrium position) versus 
time. Scientists like to say it's a plot of 
displacement as a function of time. This 
may represent a pendulum. You kick it 
when the clock is set to zero (see beginning 
of the graph). The pendulum ball or bob 
starts to swing away from equilibrium (say 

to the right). It reaches some maximum 
displacement to the right, then starts to 
come back. It overshoots the center and 
proceeds to the left. This is represented in 
the graph as the curve dips below the 
horizontal axis. The bob swings back and 
forth but doesn't reach the larger distances 
from the center that it originally did. So the 
graph below indicates a gradually 
decreasing amplitude. Note that the motion 
is damped simple harmonic motion since it 
is represented by a sine wave decreasing in 
amplitude. 

The graph in Fig. B-6 can also represent 
the vibration of a mass attached to a spring. 
However, the mass is not pulled back in this 
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case but hit with an object. For a mass 
pulled back and let go, the graph starts 
somewhere away from the equilibrium line. 
The graph can also represent a dying 
sound wave. There is a law of nature that 
says there is no such thing as perpetual 
motion. It is the second law of 
thermodynamics. You may have heard 
about entropy (disorder) and the law that 

everything tends toward disorder. This is 
the same law. The first law of 
thermodynamics states that you can't get 
anything for nothing (conservation of 
energy); the second law states that you 
can't break even. Some energy is lost to 
friction. The pendulum stops swinging, the 
mass attached to a spring stops oscillating, 
the sound we hear dies down. 

 
Fig. B-6. Damped Harmonic Motion 

 
Driven Oscillations 
 

Due to the laws of thermodynamics, we 
want to be careful when we pump energy 
into a system. We want to maximize our 
efforts. Suppose we want to push a child on 
a swing. We would of course push the 
youngster at the frequency that the swing 
wants to go at. This is common sense. In 
this way, our energy use is maximized. 
When we stop pushing the child, of course 
the swing will eventually stop. 

But if we were to push the swing at 
some crazy frequency, we would be 
wasting our efforts. This wasted effort could 
be demonstrated by moving a hand back 
and forth at some different frequency than 
the swing. Perhaps, one time when the kid 
arrives at the hand, the push helps. But 
most times the push will not be with the 
swing. Occasionally, we will actually be 

trying to stop the kid when our hand pushes 
too soon and collides with the child's back. 
The second law of thermodynamics is bad 
enough for us to throw our efforts away. 
Let's find out when the driven system 
responds the best to our efforts. This brings 
us to an analysis of driven oscillations. 

Fig. B-7 describes an experimental 
arrangement to study driven oscillations. 
Tape a small ball to the end of a string. 
Grab the end of the string opposite the ball. 
Shake your hand back and forth, keeping 
your sweep within a short space (1 or 2 
cm). You may have a friend bracket this 
space with a thumb and forefinger for you. 

Can you find the frequency that makes 
the ball respond most dramatically? Your 
driving frequency is then called the 
resonance frequency. You are driving the 
pendulum at the frequency it likes to swing. 
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Stop, pull back the ball, and let it go so 
that it swings on its own. Isn't this the same 
frequency you used earlier? It will be unless 
you do the experiment in a thick medium 
like "oil." 
 
Fig. B-7. Hand Driving a Pendulum. 

 
Get a feel for the ball swinging on its 

own by counting or having someone clap 
each swing. Now stop the ball and start 
driving it from rest at this frequency. The 
ball will gradually increase its swing until it 
reaches a maximum as you continue to 
drive the pendulum at the resonance 
frequency. Resonance occurs when the ball 
responds with maximum swing. Resonant 
vibrations are also called sympathetic 
vibrations (the system "is in sympathy" with 
your vibrations). Compare the responses of 
the ball (total extent of swing) for different 

driving frequencies (low, high, medium). 
Note that the ball moves a little with a low-
frequency driving force, and hardly moves 
at all when driven at high frequency. 
Somewhere at a medium frequency, the 
response is greatest (resonance). 

Now we are going to make a graphical 
sketch of our results. In Fig. B-8 below we 
view a graph of response (vertical axis) 
versus frequency (horizontal axis). A low 
response is found at low frequencies. When 
you shake the pendulum slowly, the ball 
moves very little. When you shake the 
string rapidly, the response is even less. 
You change directions so rapidly that the 
ball cannot respond quickly enough. So it 
just sits there. However, at a medium or 
intermediate frequency, the ball responds 
the greatest. 

Take your pencil and place it at the peak 
of the graph in Fig. B-8. Now place a ruler 
vertically and draw a dotted vertical line 
downward until you hit the horizontal axis. 
Your dotted line should be parallel to the 
vertical axis at the left in Fig. B-8. Now 
make a dark dot where your vertical line 
touches the horizontal line. This marks the 
spot for the value of the resonance 
frequency. If our graph had numbers on the 
frequency axis instead of the words low, 
medium, and high, you could read off the 
value of the resonance frequency. 

 
Fig. B-8. Plot of Response versus Frequency: The Resonance Curve. 
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Resonance is important in musical 

instruments. When a violin is played, the 
energy action of the bow drives the string 
into resonance. Certain frequencies are 
further enhanced as the wood and cavity 
support additional resonances. This gives a 
richer quality to the tone. 

When one softly blows across the 
opening in a flute, the energy supplied 
drives the pipe into a resonance, depending 
on the effective length of the flute 
(controlled by pressing key pads). Playing a 
recorder or toy flute, one covers holes. 
Depending on which hole is uncovered, the 
pipe acquires a different resonance 
frequency. Rather than trying to guess this 
frequency and whistle into the pipe, you 
gently blow, creating a turbulence of many 
frequencies. 

The amplification due to resonance is so 
impressive that you will readily generate a 
tone. The multi-frequency breath sound at 
the mouthpiece is called noise. But only 
that frequency component that corresponds 
to the resonance frequency of the pipe is 
picked out and amplified as the pipe 
resonates at that frequency. 
 
Examples of Resonance 
 

Your author has searched extensively 
for 10 examples of resonance to help you 
master this important concept. Examples 
were found in such diverse places as the 
author's home, Star Trek, and the Bible. All 
of these involve vibrations of some kind or 
another. You should try to identify the 
source of energy in each case, the system 
being driven or excited, and the actual 
resonance effect itself. 
 
R1. A Passing Truck Shakes Things in a 
House.  Large trucks generate low 
frequencies. 

 

Such low frequencies can cause items in 
one's home to vibrate. The author was often 
scared in Philadelphia (at his in-laws' 
former home) when he felt the entire house 
shaking from the third-floor bedroom as 
large city buses passed outside. 
 
R2. Piano Note Rattles Toaster. In the 
author's former apartment at the University 
of Maryland, hitting a key near the middle of 
the piano caused a toaster element across 
the room to rattle. Only one key near the 
center of the piano did the trick. The notes 
produced by keys to the left were too low in 
frequency, while those produced by keys to 
the right were too high. 

It is good to remember that the lowest 
note on the piano is about 30 Hz and the 
highest note is about 4000 Hz (or 4 kHz). 
The key causing the resonance was about 
300 Hz. An important middle key on the 
piano is called middle C and has a 
frequency of near 260 Hz. 

R3. Singer Breaks Wineglass. This is the 
classic case of a singer who sings a 
particular note that shatters a glass. In the 
1980s, a Memorex  Commercial on TV 
featured Ella Fitzgerald singing into a 
microphone and breaking a glass. They 
taped her. Then they played the tape and 
yes, the recording broke the glass also. 

Resonance is used dramatically in the 
movie The 4th Tenor (2002) as our star 
(Rodney Dangerfield) “shatters” more than 
a wine glass with his new operatic voice. 
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The author once found broken pieces of 
glass from a lamp on the floor in Lipinsky 
Hall. He inquired as to what was going on 
the night before, suspecting resonance. He 
discovered that the UNCA Choir had been 
practicing. 

 
 
 Interestingly, breaking a glass without a 
microphone was not documented until 
2005, when Jamie Vendera did it for 
MythBusters. He hit 105 decibels at 556 Hz 
and had to try 12 delicate wine glasses 
before finding one with a proper structural 
defect. 
 
R4. An Orchestra and Floodlights. The 

author was at a concert at the 
University of Maryland in the early 
1970s. The university orchestra was playing 
the Brahms 4th Symphony. The 3rd 
movement opened with the usual French 
horns playing the E (330 Hz) above middle 
C. As the horns held this note, the same 
tone could be heard coming from a source 
somewhere to the left. It was an eerie 
sound. 

 
Then there was a pop and a floodlight 

exploded. In the movie The Mask (1994), 

Jim Carrey uses a surrealistic toy sound 
maker and blows out the windshield of a 
car. 
 
R5. Soldiers Marching Across a Bridge. 
Soldiers do not march across bridges 
because the uniform steps could induce 
resonant vibrations in the bridge. They 
break step to prevent any possible driven 
oscillations. 

 
R6. The Avalanche. An avalanche can be 
started by vibrations. You do not want to 
shout in an environment where an 
avalanche can occur. This might involve an 
unstable arrangement of snow or rocks. 
Vibrations at the proper frequency can 
shake the snow or rock formation causing 
an avalanche. 

In a very early Star Trek episode, 
Friday’s Child (December 12, 1967), 
Captain Kirk and Science Officer Spock are 
running from bad guys on a planet. The 
medical Doctor McCoy is in the mountains 
assisting a lady about to give birth. Kirk and 
Spock come up to a mountain. They are 
trapped. 

Spock suggests that they try to induce 
sympathetic vibrations in the mountains, 
dislodging the rocks. Spock knows his 
science - that's resonance. Kirk asks for the 
probability of success, which Spock points 
out is not real good. 

They of course try it anyway. 
Unfortunately, they turn on their 
communicators to do it. The communicator 
sends out radio waves, not sound waves. 
Well, let's imagine they have a setting for 
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high-frequency acoustic waves we can't 
hear. They need a high frequency since the 
stones they wish to excite are very small. At 
this point, we are trying to save the story 
from incorrect physics. The rocks do come 
down and the bad guys get wasted. But 
there is 25 minutes remaining in the story, 
so Kirk and Spock get caught by a new 
wave of bad guys. Kirk uses psychology to 
get out of the mess at the end of the 
episode. 

An avalanche scene also appears in the 
Disney movie Herbie Goes to Monte Carlo 
(1977). Here they get the physics right. Don 
Knots (in the car "Herbie" with his friend 
driving) yodels in the mountains, impressed 
with the echoes. They are actually lost and 
he is calling for help. A small avalanche 
starts, then stops. 

Bad guys show up, as the good guys 
were tricked into making a wrong turn 
during a race. But Herbie has the idea by 
now and begins to yodel (the car's horn). A 
larger avalanche occurs, where rocks land 
on the bad guys' car. 

 
R7. Rock Concert. There was a rock 
concert at Princeton during the 1970s 
where everyone starting stomping to the 
music. The gym started shaking. 
Remember, soldiers know 
to break step when 
walking across bridges. 
However, rock lovers don't 
know that they shouldn't 
stomp in unison inside a 
large auditorium. Police 
ran in to get the audience 
to stop. Can you imagine 
the confusion? 

Hippies entranced with 
the music probably didn't 
notice the police at first. 
With all the noise and 
distraction, some thought the police might 
be after them. Some probably shouted 
"Fuzz, Fuzz" to their friends, worrying about 
the "joint" they were passing around. The 

police had more urgent concerns - the gym 
itself. Well, the gym did not collapse. 

However, skywalks in a Midwest hotel 
did collapse in the early 1980s. People 
were dancing, so resonance was a 
possibility. But the investigation showed 
that the floor wasn't bolted correctly. The 
collapse was due to weight, not oscillations. 

 
R8. Jet and Construction. A jet (DC 10) 
on its way to landing at Chicago's O'Hare 
Airport flew over a stadium undergoing 
construction in 1979. Things shook, some 
of the structure collapsed, and tragically, 
five people were killed. The Asheville-
Citizen (August 14, 1979) reported that a 
worker described the event by saying 
"Suddenly, everything began to vibrate. You 
could hear the roof cracking and then it 
started falling in." 

The paper quoted a spokesman for the 
Federal Aviation Administration (FAA) 
stating that planes were flying "just a couple 
hundred feet" over the site. These are the 
clues for resonance - low-flying jets, 
sympathetic vibrations picked up in the 
unstable roof. However, the FAA 
spokesmen went on to say that he never 
heard of airplane turbulence causing any 
destruction on the ground. He obviously did 
not know his physics. It's not the air 
turbulence that caused the destruction, it 

was sound resonance! 
 
R9. The Walls of Jericho. Suppose a 
scientist who was not familiar with the Bible 
began studying the Bible with the Jericho 
story. What would our scientist learn about 
the characters and the events that transpire 
in the story? 
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Our scientist would first learn that 

Joshua is in some sort of trouble. Joshua is 
leading a group wandering in the desert. 
Joshua's people need to get into a city, but 
walls prevent them. So Joshua goes off to a 
desolate place to get help from God. 

Joshua hears a voice that responds to his 
requests and proceeds to tell him what to 
do. 

From what Joshua is told to do, our 
scientist concludes that God has a very 
insightful understanding of the laws of 
physics. Below we give the instructions 
Joshua receives and alongside include a 
scientific commentary of these instructions. 

Our guide here for the interpretation is 
what we know about resonance and 
physics. 

___________________________________________________________________________ 
 
 Bible 
 

Scientific Commentary 

"... On the seventh day march around the 
city seven times, and have the priests blow 
the horns. When they give a long blast on 
the ram's horn and you hear that signal, all 
the people shall shout aloud. The wall of 
the city will collapse, and they will be able 
to make a frontal attack."  Joshua 6:4-5 

    1. March Around - to spread out. 
    2. Blow the Horns - start the resonance. 
    3. Ram's Horn - resonance frequency. 
    4. Long Blast - so response builds up. 
    5. Shout - noise for reinforcement. 
    6. Collapse - due to resonance. 

_________________________________________________________________ 
 

Everyone needs to march around so 
that the sound can better reach the wall. 
The driven oscillations begin when the 
priests blow the horns. The ram's horn is 
important as its frequency is near the 
resonance frequency of the wall. It's 
necessary to a make a long blast so that 
the wall oscillations can build up. Having 
the people shout aloud adds to the ram's 
horn. Present in the overwhelming noise is 
the resonance frequency that reinforces the 
ram's horn. The collapse occurs when the 
stress limit is reached in the wall due to the 
resonance vibrations. 

Our scientist may wonder why God 
doesn't explain the physics to Joshua more 
fully. Probably, Joshua wouldn't understand 
it. Rather than confuse Joshua, it is more 
efficient to just tell him what to do. Note that 
Joshua is told the outcome. In this sense, a 
scientific principle is explained - sound can 
make a structure collapse (like our previous 
roof collapse caused by the low-flying jet). 

Our scientist may also wonder why God 
doesn't just knock out the wall for Joshua. 
Our scientist surmises that perhaps God 
interacts only through voice. But wait, God 
could then perform the "sound" resonance 
for Joshua. So our scientist concludes that 
God is willing to assist Joshua, who asks 
for help, but that Joshua has to do some of 
the work himself. How does our scientist's 
interpretation of the Joshua story compare 
to yours? 
 
R10. The Tacoma Narrows Bridge. 
Physics teachers have discussed the 
Tacoma Narrows Bridge as the 
"granddaddy" of resonance for several 
decades. The bridge was completed around 
1940. Winds were able to get the bridge 
oscillating dramatically. The wind in the 
ravine supplied the energy for the 
oscillations. If you are somewhat confused 
as to how the wind caused the oscillations, 
don't worry, so are many physics teachers. 
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Today we believe the oscillations were not 
caused by resonance, but rather by some 
more complicated interactions. 

For an obvious scenario of bridge 
resonance, consider a monster like King 
Kong giving gentle pushes on an 
appropriate place of the bridge at the right 
frequency. In a short time, the oscillations 
of the bridge build up impressively. This 
would be resonance. 

However, we include the Tacoma 
Narrows Bridge here for its historical 
association with resonance and its 
spectacular display of catastrophic 
behavior. 

The bridge's road surface oscillated in a 
twisting fashion. Such waves are called 

torsional waves.  The Tacoma Narrows 
Bridge collapsed one morning after about 
40 minutes of twisting. A film of the 
incredible oscillatory bridge motion is 
observational proof of the elasticity of solid 
structures. The bridge vibrated like a large 
string. There was plenty of time for all the 
cars except one to vacate the bridge. One 
car got stuck on the bridge. The driver of 
this car crawled toward one of the bridge's 
towers. He heard concrete crackling. He 
made it off the bridge. However, his main 
concern afterwards was how to explain to 
his daughter that he couldn't save her dog, 
who was riding with him in the car. 

 
 
In 1995, a commercial advertising a 
Pioneer Sound System used footage from 
the Tacoma Narrows Bridge Collapse. They 
sped up the movie. The commercial won 
1995 Grand Clio Award, the top award for 
cleverness and creativity in advertising. 
 
Chladni Plates 
 
The German physicist Ernst Chladni 
(KLAD-knee), regarded by some as the 
father of acoustics, discovered an ingenious 
way to visualize resonance vibrations of a 
plate. You sprinkle some sand or white 
powder on the plate and then use an 
oscillator to produce frequencies. When you 
hit a resonance frequency of the plate, the 
plate goes wild. Regions where the plate 
vibrates become free of the powder as it 
gets shaken off. However, some paths 
along the membrane do not move and the 
white powder stays there. 
 

One finds beautiful patterns for the various 
modes of vibrations. Plates are two 
dimensional and very complicated 
compared to the thin strings and pipes will 
be discussing later. Strings and pipes are 
more like one-dimensional structures as the 
long length predominates over the small 
cross-sectional area. 
 
Fig. B-9. Chladni Pattern 
 

 
 

Courtesy www.FreeScienceLectures.com

--- End of Chapter B --- 
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C. Waves 
 

We have seen that sound consists of 
vibrations or oscillations. Scientists study 
traveling vibrations under a general 
category called waves, a topic we 
investigate further in this chapter. We are 
already familiar with several periodic wave 
characteristics such as amplitude, 
frequency, and waveform. So we have 
been studying waves already. Here, we will 
sharpen our skills by probing deeper into 
what a wave is. A definition can be given 
as: a wave is a traveling disturbance. 

Fig. C-1a below illustrates a very simple 
traveling disturbance. Our assistant has 
shaken a hand up and down at the left end 
of a rope to make a single crest. This "crest 
disturbance" is a pulse that travels to the 
brick wall. It is a wave; however, it is not 
periodic. The hand was shaken once. 
Notice that the rope moves up and down in 

the various locations along the rope as the 
pulse travels. The rope itself doesn't travel 
but the deformed moving shape does. 

The rope is the medium that supports 
the waves. If there were no waves, the rope 
would appear at rest in equilibrium 
everywhere as a horizontal line. Since the 
rope medium moves up and down, i.e., 
transverse to the direction of motion as the 
disturbance passes, we say that the wave 
is transverse. What do you think happens 
when the pulse reaches the brick wall? 

In Fig. C-1b we view a pulse on a slinky. 
Our assistant has pushed in and out quickly 
to start a compression wave. Note that the 
"slinky ringlets" move back and forth along 
the direction of propagation (parallel) as the 
pulse travels to the wall. The wave is said 
to be longitudinal. 

 
Fig. C-1a. A Transverse Pulse Wave Traveling Down a Rope. 

 
 
Fig. C-1b. A Longitudinal Pulse Wave Traveling Down a Slinky. 

 
 

Fig. C-2 illustrates our rope wave, slinky 
wave, and a representation for a sound 
wave. The rope wave shows a crest and its 
counterpart, the trough. This is one 
complete wavelength for a simple periodic 

wave. You make a crest by pulling your 
hand up at the end of a rope; you make a 
trough by pulling down below the horizontal. 
Similarly, the slinky wave shows two 
sections, a compressed region and its 
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opposite, a stretched region. You make a 
compressed region by pushing in at the end 
of a slinky; you make a stretched region by 
pulling out. A simple longitudinal wave then 
consists of a compressed region 
(analogous to the crest of a rope wave) and 
a stretched region (analogous to the trough 
of a rope wave). The rope wave is 
transverse and the slinky wave is 

longitudinal. The amplitude for the rope 
wave is the distance measured from the 
center equilibrium line up to the maximum 
point. For the slinky wave, we compare the 
density of "ringlets" (how many per cm for 
example) with the density for a normal 
slinky with no waves on it. In each case, the 
amplitude is a measure relative to the 
quiescent state of the medium. 

 
Fig. C-2. Three Types of Waves. 

 
 

The third example in Fig. C-2 represents 
a sound wave. Sound waves are similar to 
slinky waves. The layers of air are 
compressed in some regions, where the 
molecules get closer together. Air layers 
are less dense in other regions. These less 
dense regions are called rarefactions. The 
amplitude of a wave is always measured 
from equilibrium. 

The equilibrium density for air is that 
density when there are no sound waves. 
We can use this value or alternatively the 
equilibrium pressure. Then the com-
pressions are regions of higher pressure 
and the rarefactions are regions of lower 
pressure. A unit of pressure is the 
atmosphere (atm). At sea level under 
normal conditions, the pressure of still air is 
1 atm. We will not need to worry about units 
for amplitudes of sound waves in this text. 
Since sound is similar to the slinky case, we 
state the following important observation: 
sound is a longitudinal wave. 

The easiest wave to sketch is the 
transverse wave (see the rope wave in Fig. 
C-2). Slinky waves are hard to draw. Layers 
of air molecules are just too cumbersome to 
mess with. So we sketch the transverse 
picture to represent all three types of 
waves. In Fig. C-2, the three waves are 
lined up. The crest of the transverse wave 
coincides with a compressed region in the 
slinky wave and compression in the sound 
wave. The trough coincides with the 
stretched slinky and rarefaction. So the 
crest in a transverse picture can mean 
compression (higher pressure) and the 
trough indicate rarefaction (lower pressure). 

This representation is more meaningful 
than you may realize. Push your hand in 
and out like you are driving a slinky. You 
can imagine your hand to be the membrane 
of a speaker generating sound waves. In 
either case, you are making longitudinal 
waves. Now someone comes along, tapes 
a piece of chalk to your moving hand, picks 
you up, orients you properly so that the 
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chalk touches a blackboard, and carries 
you across the room as your hand writes on 
the board. You will trace out a transverse 
picture of your longitudinal wave. This is 
just what the oscilloscope (mentioned 
earlier) does for us. So we will use the 
transverse drawings to represent our 
longitudinal sound waves. 

Before we discuss basic properties of 
waves in general such as reflection, let's 
look at the general relationship between 
frequency and wavelength in more detail. 
We already know that high frequencies 
have short wavelengths and vice versa. 
Now we will learn that the frequency and 
wavelength are related to the speed of the 
wave (also called the velocity). Suppose 

you are riding on a periodic wave (see Fig. 
C-3 below). For a specific example, say that 
the wavelength is 10 m and that these pass 
by a stationary observer on the shore at a 
frequency f = 5 Hz (5 go by per second). 
This is some wave! (But not a real water 
wave.) Then, the rider moves 5 x 10 = 50 
m/s. We see that the speed of a wave is 
equal to the wavelength multiplied by the 
frequency. 

 
wave speed = wavelength x frequency 

 
Fig. C-3. A 5-Hz Wave with Wavelength 10 m Moving to the Right. 

 
 

The relationship v = λ f incorporates our 
observation that higher frequencies mean 
shorter wavelengths. The speed v for the 
wave depends on the medium. For sound 
at room temperature, this is 340 m/s. 
Suppose we have a rope wave where the 
speed is 100 m/s. Then, a low frequency of 
5 Hz means a wavelength of 20 m since 20 
x 5 = 100. 

If we increase the frequency to 10 Hz, 
then the wavelength shortens to 10 m since 
10 x 10 = 100. Raising the frequency to 25 
Hz, the wavelength becomes even shorter, 
4 m (since 4 x 25 = 100). Think of an 
analogy with money where 100 stands for a 
dollar. You can get a dollar with 20 nickels 
or 10 dimes or 4 quarters. Can you think of 
other combinations? Note that as you 
increase the value of each coin, the number 
of coins decreases because the total 

amount of money is fixed at a dollar. This is 
analogous to our fixed wave speed. Again, 
what does this imply in terms of wavelength 
and frequency? 
 
Reflection 
 

Waves exhibit the property of reflection. 
A reflection occurs when a wave bounces 
off an obstacle. The directions of the 
incident and reflected waves have a simple 
relationship. Fig. C-4 illustrates the law of 
reflection. We do not show the waves in 
Fig. C-4, just the direction of the waves. 
The waves bounce off the barrier so the 
angles of incidence and reflection are 
equal. These angles are measured relative 
to a center reference line called the normal. 
The law of reflection is demonstrated 
readily with a flashlight, i.e., using light. You 
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can easily achieve a concentrated beam of 
with your flashlight. You use a mirror for the 
reflecting barrier. 

The law of reflection also describes 
bouncing a ball off a side of a pool table. 
Finally, if we neglect gravity or go on the 
space shuttle, throwing a ball along the 
direction of incidence in Fig. C-4 will result 
in the ball leaving along the direction of 
reflection, after its collision with the wall. 

 
Fig. C-4. Law of Reflection. 

 
The angle of incidence equals the angle 

of reflection: θθθθi = θθθθr. 
 

Every time you hear an echo, you 
experience the reflections of sound. One 
fine Sunday afternoon, the author heard a 
dramatic reflection outdoors at the 
University of Maryland. He was walking 
from Graduate Housing to the Physics 
Building in the early afternoon to do 
physics. Most people were at the football 
game. He heard cheers and shouts as he 
walked through the parking lots. As he 
approached the Undergraduate Library, 
which is situated across the street from the 
Physics Building, he heard the cheers 
coming from in front of him. This was an 
eerie experience as the library was in that 
direction (see Fig. C-5 below), not a 
cheering crowd. 

It was especially strange because other 
buildings between the football field and the 
observer (not shown below) prevented any 
direct sounds from the field to reach him. 
Therefore, the usual echo effect did not 
occur. One just heard the "reflected beams" 
and was tricked into interpreting them as 
the real thing. After a moment's "reflection," 
the author figured out what was going on. 

Fig. C-5. Sound Reflecting From Tall Brick Building. 
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Another example of reflected sound is 
found in the whispering chamber. This room 
has an elliptical shape (see Fig. C-6 below). 
A person at position A can have a 
conversation with a person at position B 
even though the distance between these 
points may be great. In fact, the speaker at 
A can speak gently or whisper. The sound 
waves bounce off the walls in such a way 
that they focus after reflection at point B. 
Two such rays are shown in Fig. C-6. 
Imagine numerous rays emanating from A, 
hitting the wall at various places, yet all 
reaching B! Other observers throughout the 
room may get a few rays but the observer 
at B gets reinforcement from all the 
reflections of waves starting at A and vice 
versa. 

 
Fig. C-6. Sound Reflecting In a Whispering 
Chamber. 

 
There is a whispering chamber in the 

Capitol Building in Washington, DC. Other 
examples can sometimes be found in wall 
structures outdoors. Can you locate the one 
on the UNCA campus? 

Museums sometimes have a 
demonstration where there are two large 
dishes. You speak at a designated point in 
front of one of these and your friend far 
away at a corresponding point near a 
second dish can hear you. Dishes for 
sending waves far to another dish need to 
be parabolic in shape, a shape similar to 
the ends (left and right) of the elliptical walls 
in Fig. C-6. 

There is also the story of a church in 
Europe with the whispering chamber effect. 
By some architectural coincidence, a 
confessional was placed near one focal 

point, while the other focal point was 
somewhere down the aisle. The person at 
the right spot in line for confession was able 
to hear the sins being confessed at the 
moment (so the story goes). 
 
Refraction 
 

Sound travels at different speeds 
through air with different temperatures. 
Sound travels faster in warmer air than it 
does in cooler air. Table C-1 below lists 
some air temperatures and the 
corresponding speeds of sound at those 
temperatures. Can you see a relationship 
between speed and temperature? The 
general relationship is that the speed of 
sound increases as temperature increases. 

Analyze the data and see if you can 
determine by how much the speed 
increases in m/s (meters per second) for 
every 10 degrees on the Celsius or 
centigrade scale. Scientists get excited 
when they discover such relationships in 
data. They are fascinated by the recurring 
order and beauty found in nature. Their 
delight in such order and beauty is similar 
to the appreciation of balance and grace in 
a Rembrandt painting or the experience of 
harmony and elegance in a Mozart sonata. 

The nice rule incorporated in the data of 
Table C-1 is valid over the temperatures 
that we usually find in our environment. 
Things get complicated if the air becomes 
extremely hot or cold. 
 
Table C-1. Sound Speed and Temperature. 
Temperature Sound Speed 

(m/s) 
Fahrenheit 

Value 
Freezing (0°C) 331 32°F 

Cold (10°C) 337 50°F 

Room (20°C) 343 68°F 

Hot (30°C) 349 86°F 

 
The speed of sound's dependency on 

air temperature has interesting effects. In 
order to easily illustrate this, we need to 
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learn how to sketch wave crests. Fig. C-7 
shows a sine wave with a sketch of the 
wave crests below it. Remember that the 
sine wave can also describe longitudinal 
waves. The vertical lines can represent the 
crests of a water wave or the high-pressure 
regions of a sound wave (the 
compressions). 

 
Fig. C-7. Sine Wave and Wave Crests. 

 

 
 

Fig. C-8 below illustrates crests 
emanating from a point source. Think of a 
stone dropped into water. Circular waves 
move outward. Fig. C-8 is a snapshot in 
time showing the circular crests at a given 
moment. The center source can also 
represent a sound source. Then the 
outgoing waves are spherical in three 
dimensions. However, you have the basic 
idea in the two-dimensional picture. 

 
Fig. C-8. Crests From Center Point Source. 

 

 
Fig. C-9 depicts a source of sound at 

the left of the figure. Only part of the 
outgoing circular (really spherical) wave is 
shown, the part heading toward the right. 

These circular crests get distorted since the 
air temperature is not the same 
everywhere. In our example, the air is 
cooler at the ground and warmer above. 
The crest travels faster in warm air so the 
top parts of the crests get ahead of the 
lower parts. This causes the wave crests to 
straighten out (see center crest) and then 
curve the other way. The waves in a sense 
"focus" at a point to the right. This 
converging is the opposite of spreading out 
and the sound is reinforced at the far right. 
The second half is kind of like running a 
movie backwards. In summary, sound 
waves first spread out, then recollect. This 
phenomenon is called refraction. 
 
Fig. C-9. Sound Crests and Refraction. 
 

 
 
An observer at the far right is in a better 

position to hear the source than an 
observer in the middle. This will occur when 
hot air is above cold air. In the daytime, 
heat from the sun makes the ground hot. 
The air near the ground is hotter than the 
air above. Have you ever walked in your 
bare feet on an n asphalt driveway at noon 
in the summer? At night, the ground cools 
as the hot air rises with no additional 
sunlight streaming down. This cool ground 
with warm air above is now the opposite of 
what we had in the day. It is called a 
temperature inversion. This temperature 
inversion allows sound to be heard better 
farther away. It's not that sound "carries" at 
night; the bending waves do the trick. 
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The author often heard music from the 
Grove Park Inn at his former home on 
Howland Road about half a mile away (little 
less than 1 km). He thought there was a 
party around the block until he realized it 
was refraction of sound due to the 
temperature inversion at night. UNCA's first 
chancellor, Chancellor Highsmith, told the 
author (around 1980) that he heard it also 
from the Chancellor's Residence on Macon 
Avenue. 
 
Diffraction 

 
   Diffraction refers to the bending of waves 
near openings, corners, and obstacles. This 
is another type of bending of waves in 
addition to refraction. 
 
D1. Openings. An easy way to understand 
diffraction is to think of water waves 
heading toward an opening between two 
barges (see Fig. C-10a). The crests of the 
water waves are linear as they approach 
the opening. Then circular waves spread 
out on the other side of the opening. Do 
sound waves spread out like this through 
open doorways? Can you hear someone 
call you from within a classroom if you are 
down the hall? 
 
Fig. C-10a. Diffraction Through Opening. 

 
 
D2. Corners. Waves also diffract around 
corners. Can you call a friend who has just 

walked around the corner of a building? 
Does the sound reach your friend? A 
general guide for diffraction is that waves 
will diffract, i.e., bend around openings, 
corners, or obstacles, provided that the 
encountered structures are comparable in 
size to the wavelength of the waves 
(distance between crests). 

 
Fig. C-10b. Diffraction Around Corner. 
 

 
D3. Obstacles. Waves also diffract around 
obstacles. Have you ever tried talking to 
someone on the other side of a tree? Can 
they hear you? Can you turn around and 
still maintain a conversation with someone 
behind you at home? Do the sound waves 
wrap around your head and get to the other 
person? 

 In light of what was said in 2 above 
about the conditions for diffraction, why do 
you think light doesn't bend around trees? 

 
Fig. C-10c. Diffraction Around Obstacle. 

 
Interference 
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Two waves combine when they meet. 
You simply add the amplitudes. Fig. C-11 
considers square waves so that addition is 
easy. In Fig. C-11a the waves reinforce 
because the crests of the two waves match 

and likewise the troughs. The waves are in 
phase. The interference is constructive. In 
Fig. C-11b the interference is destructive as 
crest meets trough and vice versa. The 
waves are out of phase. 

 
Fig. C-11a. Constructive Interference (Two Identical Waves In Phase). 

 

 
 
Fig. C-11b. Destructive Interference (Two Identical Waves Out of Phase). 
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Sketch a sine wave on a piece of paper 
and see if you can sketch underneath your 
sine wave another similar wave aligned so 
that the crests and troughs work together. 
Now do another sketch for the case where 
the waves work against each other and 
cancel. 

Fig. C-12 illustrates an arrangement to 
study interference. We have two speakers. 
We let them face each other to get them 
close to each other. We send a simple tone 
to each speaker to keep the input easy to 
compare. We do not use stereo but send 
the same signal to each speaker. 

We experiment with switching the 
polarity of one of the speaker connections. 

The speaker wire contains two wires, 
insulated but bundled together in the wire 
leaving the source. With the polarity 
reversed for one speaker, one speaker 
membrane pushes out to produce 
compression while the other pulls in to 
make a rarefaction. The waves then work 
against each other as compression 
competes with a rarefaction. The sound 
level drops. In fact, it is softer than one 
speaker alone (middle case illustrated in 
Fig. C-12). Of course the loudest sound 
occurs when the speakers send out 
compressions together (case at far right of 
Fig. C-12). 

 
Fig. C-12. Interference with Speakers. 

 

 
 

Instructions usually warn you not to 
cross one of your speaker hook-up wires. 
These speaker wires attach your amplifier 
to your speakers. They assume that you sit 
equidistant from each speaker so that a 
compression leaving one will arrive at you 
directly when a rarefaction does so from the 
other speaker, if wired incorrectly. Here are 
some questions to think about. 
 
1. If your speakers are wired incorrectly, 
would you be better off in an open field 
(assuming electricity is available) or in a 
house with walls? Think of reflection. 
 
2. If speakers are wired incorrectly, are you 
better off listening to stereo or an old 
monaural recording? 

 
3. What happens if you reverse the polarity 
of both speakers? 
 

There is an interesting demonstration 
that illustrates both diffraction and 
interference. Consider a speaker by itself. 
Then consider a speaker inserted into a 
hole of a flat board. The latter speaker is 
said to have a baffle. You could also insert 
the speaker into a wall to get a similar 
effect. 

A speaker membrane sends out waves 
both to the front and to the rear. When the 
membrane pushes out, compression is sent 
out toward the front. At the same time, a 
rarefaction is sent out the rear. The waves 
leaving the front are out of phase with the 
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waves leaving the rear. Refer to the sine 
waves in Fig. C-13. Without the baffle, a 
portion of the front and rear waves diffract. 
That is, part of the rear wave diffracts and 
gets to the front and vice versa. Suppose 
you were talking to two friends, one in front 
of you and one behind you. Both would 
hear you. The person in the rear would hear 
part of the forward wave that diffracts 
around your head. But since you do not talk 
out of the back of your head at the same 
time, you don't need to worry about a 
second wave interfering. 

The problem with the speaker is that 
unlike you, the speaker produces waves out 

the front and rear simultaneously due to its 
simple membrane structure. And these are 
out of phase! When they diffract and mix, 
they interfere destructively. The sound is 
weakened. 

The baffle (see right diagram in Fig. C-
13) prevents the waves from diffracting. 
Therefore the waves cannot mix. There is 
no destructive interference and the sound is 
louder. The speaker can now produce the 
sound it is capable of without working 
against itself. The emitted sound is 
improved in both the forward and rear 
directions.

 
Fig. C-13. Speaker With and Without Baffle. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

--- End of Chapter C --- 
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D. Wave Applications 
 

 
The wave phenomena we studied in the 

previous chapter emphasized fundamental 
properties of waves. In this chapter, we 
focus more on applications. Some of the 
applications we encounter here will build on 
the basic physics of the previous chapter. 
 
SONAR 
 

SONAR stands for SOund Navigation 
And Ranging. One can determine the depth 
of a body of water by sending sound waves 
to the bottom and timing how long it takes 
the sound to return. However, we must note 
that sound travels at different speeds in 
different media. In fact, even in the same 
medium such as air, the sound varies if the 
temperature of the air changes. 

Table D-1 is a short list of sound speeds 
in a few media. The three main states of 
matter are accounted for: gas, liquid, and 
solid. Sound travels faster in lighter gases 
such as helium. Helium atoms are light and 
respond quickly. We commonly encounter a 
use for helium in party balloons. Helium's 
lightness causes balloons filled with helium 
to float upward in air. 

 
Table D-1. Speed of Sound in Various 
Media. 
 

 
 

Sound speed is greater for liquids, 
where the molecules are closer together 
and they can transmit their vibrations more 
readily. The stiffness of solids allows for 
even more rapid propagation of sound 
waves. 

The value for wood given in the table is 
typical of elm, maple, and oak. Steel is the 
stiffest of the examples in Table D-1 and 
therefore has the greatest speed of sound. 
Sound speed in steel is approximately 6000 
m/s = 6 km/s (6 kilometers per second, 
which is about 4 miles per second). 

Question: The circumference of the 
Earth is 40,000 km (25,000 miles). How 
long would it take to go around the world if 
you could travel at the speed of sound in 
steel? 

Answer: How many kilometers per hour 
do you go if you travel at 6 kilometers per 
second? Multiply 6 km/s by 3600 to get 
21,600 km/h and round this off to 20,000 
km/h. Since you have to go 40,000 km, you 
get an estimate of 2 hours for your travel 
time! 

Let’s measure water depth by sound 
waves. See Fig. D-1 for a sketch of the 
general idea of SONAR. The sound is sent 
to the bottom of the water, bounces off the 
ground, and returns to the ship. The time it 
takes to return is then used to determine 
the distance. A travel time of 1 second 
indicates 1500 meters traveled since the 
speed of sound in water is 1500 m/s. For 
this case, the water is 750 meters deep, 
one half of 1500 meters since the sound 
needs to travel down and back. We have an 
echo effect, a result of the fundamental 
principle of waves called reflection. 
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Fig. D-1. SONAR: Sound Waves Used to 
Measure the Depth of Water. 

 
Recall that we encountered an 

experiment to measure the speed of sound 
on the UNCA Quad. There we knew the 
distance and time. We figured out the 
speed. Here we apply our knowledge of the 
speed and measure the time to determine 
the third variable, the distance. 

If you are not too familiar with the metric 
system, remember that a meter is 
approximately a yard. A meter is actually a 
little longer than a yard, about 8% longer (8 
centimeters or 3 inches longer). One 
hundred meters is the distance between the 
goal posts on a football field, a distance a 
little longer (8%) than the 100-yard playing 
field. A mile is 5280 feet or 1760 yards. In 
terms of meters, the value is approximately 
the same numerical value as that for yards: 
1609 meters. Therefore, the speed of 
sound in water (1500 m/s) is almost one 
mile per second. Our body of water is 750 
m deep or about a half-mile deep. 
 
Ultrasound 
 

Ultrasound refers to frequencies above 
the limit of human hearing. Rounded off, 
this limit is 20,000 Hz or 20 kHz. Ultra-high 
frequencies can be used to make images of 
internal body structure. The word 
ultrasonics is also often used to describe 
such high-frequencies. 

Ultrasonic means "beyond sound," 
which can refer to passing the speed of 

sound or to exceeding the frequency of the 
sound we hear. We use the latter definition 
in this section. The word supersonic we 
encountered in an earlier chapter is 
synonymous with ultrasonic. 

Ultrasound penetrates the body and 
reflects off underlying structure. The waves 
that return are used to construct an image 
of the inner body. Such a medical image is 
called an ultrasound or sonogram. 
Ultrasounds are often used to take pictures 
of the fetus since common medical imaging 
using x-rays would be very harmful to the 
fetus. When you are x-rayed, a section of 
your body is chosen. A heavy cover 
containing lead may be placed over nearby 
parts of your body, and the technician may 
leave the room when the x-rays are 
emitted. 

Sound waves allow the technician to 
look at parts of the fetus and capture 
images on a computer. Parts can be 
examined. Lengths of bones can be 
measured and compared with normal 
growth patterns. See Fig. D-2 for 
dimensions of a fetus from an ultrasound 
exam done at Asheville Women's Medical 
Center in 1983. 
   Medical researchers constantly improve 
imaging techniques and study their effects 
on the patient. As a general rule, you 
should always consult with your doctor 
about the possible side-effects for even 
supposedly safe treatments. While basic 
physics can tell us for example that 
ultrasound is very safe compared to x-rays, 
statistical medical observation over a long 
period of time is necessary to assess subtle 
or long-term biological effects to any 
diagnostic test or treatment. As with any 
developing field of research or science, the 
latest information can always modify 
previously-held beliefs. 
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Fig. D-2. Dimensions of Fetus (Author's First Daughter) from Ultrasound Exam. 

 
 

The smaller variety of bats, called 
microbats, use ultrasound to navigate. 
These bats are about the size of a small 
bird. They emit an ultrasound which reflects 
from objects. When they receive an echo, 
they know something is in front of them. 

This is convenient for bats living in dark 
caves. Or maybe, if a cave is not available, 
the bats may find a home in an old dark 
abandoned house - perhaps the one on the 
hill near the graveyard. Or a bat may settle 
for your dark attic. The bat's ability to locate 
objects and prey by an echo is referred to 
as echolocation. Echolocation does not 
have to use ultrasound. Some birds use 
sounds in the audible range. Porpoises also 
use echolocation. 

We will use a simple model to estimate 
the ultrasound frequency of bats as 
physicists often use simplified ideas to 
estimate things. Bats typically use pulses of 
ultrasound rather than a continuous 
emission. The high frequency has very 
short wavelength. Recall that waves diffract 
around obstacles comparable in size to 
their wavelengths. So if you want to get a 
good bounce off a very small object, use a 
very short wavelength. Then, the structure 
is "large" compared to the wavelength and 
reflection predominates instead of 
diffraction. The ability to get a reflected 
wave from a small object in order to acquire 
its image is called resolution. 

Bats use short wavelengths to obtain 
good resolution. This is especially important 
if you like to dine on insects. And most bats 

do. However, three of the hundreds of 
species of bats prefer blood. These are 
called vampires! 

We can use the relation v = f to find 
out how high the frequency has to be in 
order to image an insect. Let's suppose that 
a bat wants to have a moth for dinner. 
Estimate the size of a moth. How about 3 
cm (three centimeters)? That's a little more 
than an inch. To get a significantly smaller 
wavelength than this, let's pick 1/10 of this 
value. That gives a wavelength of 0.3 cm or 
3 mm (3 millimeters). Think of 1 cm as the 
width of your little finger and 1 mm as the 
size of lead in a pencil. To use our relation 

v = f properly we need to be consistent 
with our units for distance. If we stick with 
mm, then we express the speed of sound, 
340 m/s, as 340,000 mm/s. Remember that 
1000 mm gives one meter. 

So if you travel 340 meters, this 
distance is also 340,000 millimeters. Since 
our analysis is an estimate, we can round 

off 340 to 300. Then v = f becomes 
300,000 mm/s = (3 mm) f. What must 3 be 
multiplied by to get 300,000? The answer is 
100,000. Therefore, f = 100,000 Hz (one 
hundred thousand hertz). 

Bats actually use frequencies as high as 
this. See Fig. D-3 for a wave reflecting from 
a moth. Bats are not blind, so you shouldn’t 
use the expression "blind as a bat." But 
echolocation enables the bat to detect a 
flying insect from afar. 

Challenging Problem: Estimate the 
frequency for a medical ultrasound head if 



Copyright © 2012 Prof. Ruiz, UNCA D-4 

the resolution is 1 mm and sound speed in 
tissue is 500 m/s. Answer: f = 5,000,000 Hz 

= 5 Megahertz = 5 MHz. 

Fig. D-3. Reflected Ultrasound from Flying Insect. 

 
The hearing ranges of some common 

animals reach well into the ultrasonic 
region. We are familiar with a dog's ability 
to easily hear high-pitched sounds. The 
silent whistle produces a tone of about 
30,000 Hz (30 kHz), well beyond human 
hearing. Yet dogs respond to the whistle. 
The whistle is small since the wavelength is 
very short. We will study waves in pipes 
later. A general feature to remember is that 
small structures produce short-wavelength 
sounds, i.e., high pitches. Large vibrating 
mechanisms produce long-wavelength 
sounds, i.e., low pitches. That's why during 
Saturday-morning cartoons, the little 

creatures speak in high-pitched voices and 
the large ones sound low and deep. 

Fig. D-4 indicates the hearing ranges of 
some animals. Snakes do not do well. They 
are restricted to lower frequencies. 

Humans, with a hearing range of 20  
20,000 Hz, hear many more frequencies 
than snakes. Human speech falls mostly 
between 250 and 4000 Hz. In order to get 
an idea of what frequencies snakes can 
hear, have your friends talk to you with rags 
jammed in their mouths. This will filter out 
the higher frequencies. The other animals 
listed in Fig. D-4 surpass humans. Our 
friend, the bat, ranks the highest. 

 
Fig. D-4. Some Animals and Very Approximate Hearing Ranges. 
 

 
Elephants have a range from about 16 

Hz to 12,000 Hz, but they are very sensitive 
at the lower end. For the other animals we 

have generously rounded off at the lower 
end. 
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Courtesy www.ghananewsagency.org 

 
The Doppler Effect 
 

When waves are bounced off moving 
objects, there is a shift in frequency. This 
phenomenon is named after physicist-
meteorologist, Doppler. Back in 1840 there 
were no cars driving around every day in 
order to hear a passing car's horn shift in 
pitch. We have all heard such shifts. When 
a car blowing its horn comes toward you, 
the pitch is higher. When the car is leaving 
you, the pitch is lower. The effect is most 
dramatic when a car heading toward you, 
passes by you with the horn sounding. 
Measuring the shift in frequency can tell 
you how fast the car is moving relative to 
you. Police use the Doppler effect with an 
invisible form of light when they bounce 

radio waves off your car (RADAR). Bats 
experience frequency shifts when their 
high-frequency acoustic waves bounce off 
moving targets. This can help them 
determine the speed of flying insects. The 
delay of the echo gives the bat the distance 
to the prey. 

Doppler had musicians help him with an 
experiment to verify that frequency changes 
due to motion. Some musicians played 
horns on a moving train. They chose a 
specific note. Other musicians on the 
ground could tell with their well-trained ears 
that the tone was higher as the train 
approached them, to their surprise. In 
music jargon, a raised pitch is said to be 
"sharp" or "sharper." A lowered pitch is said 
to be "flat" or "flatter." The musicians on the 
ground heard a tone that was too sharp as 
the source of sound approached them. 

Fig. D-5 illustrates the Doppler Effect. 
Think of the horn as sending out a crest 
(compression) every so often. When the car 
approaches, it moves a little toward the last 
crest it sent out to the observer. Therefore, 
the distances between crests are shortened 
and the pitch is higher. When the car is 
moving away, the opposite takes place and 
longer wavelength means lower pitch. 

 
Fig. D-5. The Doppler Effect. 
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Wave Addition and Beats 
 

We have seen the effects of adding 
waves in our previous discussion on 
interference. In our study of interference we 
considered two identical waves. When the 
waves were added in phase, we obtained 
constructive interference; when the waves 
were added out of phase, we found 
destructive interference. Now we are going 
to add different waves. To demonstrate the 
phenomenon of beats we need two waves 
that are almost the same. However, we will 
first take this opportunity to just practice 
adding different waves. This will help us 
develop the necessary skills to analyze 
waves in more depth later. After 
considering two examples of wave addition, 
we will proceed to discuss beats. 

In Case I below (Fig. D-6) we add two 
square waves. Note that the second wave 
(lower diagram) is one half the wavelength 
of the first (upper diagram). Therefore, the 
second wave is twice the frequency of the 

first one. Remember our relation v =  f. 
This tells us that the product of the 
wavelength and frequency is a constant, 
the speed of the wave in the particular 
medium. If you halve the wavelength, you 
double the frequency. Recalling the analogy 
with money, if you have 4 quarters, you 
have a dollar. If you halve the number of 
coins to 2, you double the amount of each 
coin. You need two fifty-cent pieces. 

To readily find the sum wave, divide the 
waves into 4 parts or sections. In the first 
quarter, both top and bottom waveforms 
have displacement values of 1. Therefore, 
the sum displacement is 1 + 1 = 2. For the 
second quarter, we have the top wave at 1 

and the bottom one at 1. The plus 1 and 

minus 1 cancel. We get 1  1 = 0. For the 

third quarter, we have 1 + 1 = 0. Finally, 

for the last quarter, we have 1 1 = 2. 
Think of plus values above 0 as being "in 
the black," while negative values mean 
we're "in the red" (in debt). 

 
Fig. D-6. Wave Addition: Case I. 
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Case II is given in Fig. D-7. We are to 

add a square wave to a triangle wave. Note 
that the triangle waveform has one half the 
wavelength as the square wave, which is 
above it. The triangle wave therefore has 
twice the frequency. It goes through two 
complete cycles or patterns in the time it 
takes the top waveform to go through one 
cycle of a crest and trough. 

The first wave (upper one) is at +1 for 

the first half and 1 for the latter half. 

Consider the first half of the triangle wave 
and add +1 everywhere. This is equivalent 
to raising the entire first half of the triangle 
up by 1. The second half of the triangle 
waves gets lowered by 1 since our square 
wave is at a minus 1 for the second half of 
its cycle. Study the sum displacement. 
Visualize the first half of the sum as a 
raised triangle. Visualize the second half of 
the sum displacement as a depressed 
triangle. 

 
Fig. D-7. Wave Addition: Case II. 
 

 
 

You can add any two waves if you have 
enough patience. Look at each unit of time 
above. Along the time axis (horizontal) 
there are 16 divisions in our graphs, for the 
waves under consideration. Consider the 
3rd division along the horizontal axis. The 
upper wave has a value of 1 there and the 
lower wave has a value of 0.5 or 1/2. 
Therefore, the sum displacement has a 

value of 1.5 or 3/2 at the 3rd division. Since 
each vertical division is 1/2, you need to 
count up 3 divisions (or boxes) to find the 
1.5 mark. You need to be a little careful at 
some places like the beginning. The square 
wave shoots up from 0 to 1. Well, since the 
triangle wave is 0 here, the sum wave will 
go from 0 + 0 = 0 to 1 + 0 = 1. 
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See if you can determine the sum 
displacements for the cases in Fig. D-8. 
 
 
Fig. D-8. Practice with Addition. Sketch in the Sum Displacement for Each Case. 
 
Practice Case I. 
 

 
 
Practice Case II. 
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We now turn to the subject of beats. 
Consider two pure tones very close in 
frequency. Let the sources of these waves 
start oscillating in phase. Our sources might 
be two electronic oscillators sending signals 
to amplifiers and then speakers. Since the 
waves do not have exactly the same 
wavelength, after several cycles, the peaks 
drift out of alignment. There comes a time 
when a crest from one is aligned with a 
trough from the other. The waves, starting 
with constructive interference, now ex-
perience destructive interference. However, 
after awhile, the waves are once again in 
phase. This drifting in and out of phase is 
heard as a pulsation, a pulsating tone. We 
call these pulsations beats. 

An analogy of drifting in and out of 
phase can be found where two people are 

walking with different step sizes. They can 
start off walking with each moving right foot 
forward. Shortly, the right foot of each will 
be doing something different. After awhile, 
when one person's right foot steps forward, 
the other person's left foot will be stepping 
forward. Then awhile later, we can find an 
instant when both right feet will step forward 
at the same time. Try observing this when 
you walk with a friend sometime. 

Playing two sine waves (pure tones) 
with similar frequencies f

1
 and f

2
 results in 

beats. You hear the average frequency 
pulsating at a frequency given by the 
difference. You subtract the smaller 
frequency from the greater one to get this 
beat frequency. 

Table D-2. Playing Two Similar Pure Tones with Frequencies f
1
 and f

2
. 

 

 
 

Let's do an example. Let one frequency 
be 440 Hz (f

1
) and the other be 444 Hz (f

2
). 

You hear the average. That would be ½ (f
1
 

+ f
2
) = ½ (440 + 444) = ½ (884) = 442 Hz. 

This 442-Hz tone pulsates at a beat 

frequency of f
2
 f

1
 = 444  440 = 4 Hz, i.e., 

4 pulsations per second. 
Musicians can use beats in tuning 

instruments. They know they are close 
when they hear their instrument "beating" 
with a reference tone. In fact, you don't 
even need talent to hear beats. Tuning 
without some reference, using a sense of 
perfect pitch is rare. Very few musicians 

have so called perfect pitch, a gift where 
they can call out the name for any single 
note they hear and know if its pitch is off a 
little. On the other hand, matching two 
tones using beats requires one to adjust the 
instrument until the beats stop! When the 
beat frequency decreases, you are getting 
closer. For example, a beat frequency of 1 
Hz (one beat per second) means you are 
very close. The piano however is 
sufficiently complex that it takes a skilled 
piano tuner to tune all the strings properly. 
We will see why in a later chapter. 
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Basic Speaker Design 
 
   We started this chapter by looking at 
applications of the law of reflection. Then, 
the last phenomenon we investigated dealt 
with interference. Speaker design 
incorporates the principles of reflection and 
interference. Diffraction is also relevant. 
The baffle we saw in the previous chapter is 
there to prevent waves from diffracting 
around to the other side where the waves 
can interfere destructively. Fig. D-9 
illustrates how reflection plays a role in 
speaker design. The speaker is enclosed in 
a box so that the rear waves can reflect off 
the back wall. The reflection adds energy to 
the vibrating membrane. 
 
Fig. D-9. Simple Speaker Design. 

 
 

If a port or duct is added (see Fig. D-10) 
the mass of air in the enclosure begins to 
undergo vibrations as a whole, in addition 
to supporting the sound waves. This is an 
example of resonance. The mass of air in a 
large cavity can swish around. It does so at 
a low frequency since large air masses are 
actually displaced. This type of system is 
called a Helmholtz resonator. An empty 
gallon jug of apple cider is another example 
of a Helmholtz resonator. See Fig. D-11. 
Blow across the top to hear the low 
resonance frequency - a nice bass tone. 

 

In the speakers of Fig. D-10, internal 
reflections (reflex) prevent half the waves 
from being lost. The other effect is the 
swishing of the air. Since the resonance 
frequency for the swishing air is low, you 
get enhanced bass when speaker 
frequencies are near resonance. In 
summary, the cavity reflex enhances the 
bass. 
 
Fig. D-10. Bass-Reflex Speakers. 

 
Check out the following Helmholtz 
resonators: one from the late 1800s based 
on the original 1850 design and a modern 
one. 
 
Fig. D-11. Helmholtz Resonator 

 

 
 

Courtesy acultivatednest.com

--- End of Chapter D -- 
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E. Modulation 
 

 
 

Ovenbird, Courtesy Photographer Dr. Dan Sudia 
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Photo by Prof. Ruiz, December 23, 2002 
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We now turn to modulation. The idea is 
simple, yet its use in acoustics gives us an 
enriching variety of sounds. Modulation 
simply means change. We know from 
experience that too much of any one thing 
can get boring. We like variety. Experts 
warn that if a teacher is lecturing in the 
same fashion for more than 12 minutes, 
then the class is gone - bored. You must 
move around, change pace, or do 
something different. 

Musicians will often change how loudly 
and softly they play. Musical lines are 
shaped into phrases much like sentences. 
They rise and fall with "inflection." 
Composers change keys in a composition - 
such changes are actually called 
modulations. In everyday life, people 
change the clothes they wear. Most people 
vary the food they eat from night to night. 
Can you think of other examples of 
change? 

We have seen that sound has three 
basic physical characteristics, which also 
have perceptual counterparts. These are 
amplitude (loudness), frequency (pitch), 
and timbre (waveform). This chapter is 
divided into three sections where we 
investigate modulation of each of these 
fundamental wave features. 
 
Amplitude Modulation 
 

The easiest wave characteristic to 

consider first is the amplitude. This physical 
feature corresponds essentially to the 
perception of loudness. Remember that the 
amplitude is a measure of the wave 
disturbance relative to equilibrium. If there 
is no wave, i.e., no sound, then the air is at 
its normal equilibrium pressure everywhere. 

We represent equilibrium by drawing a 
horizontal line. This straight line indicates 
zero disturbance. The medium is at 
equilibrium everywhere. It's like a quiet 
lake. The water surface is flat. It is still and 
there are no waves. 

A simple sine-wave disturbance about 
equilibrium consists of crests (above the 
equilibrium line) and troughs (below the 
equilibrium line). A sketch of such a wave is 
given in Fig. E-1. 

The definition of amplitude is a measure 
from equilibrium to the maximum height of a 
crest. Note that all the crests in Fig. E-1 
have the same height. Therefore, the 
amplitude of the sine wave in Fig. E-1 is 
constant. The wave does not increase in 
loudness but stays at a steady volume. 

The wavelength (distance between 
crests) is also constant. Therefore, the 
frequency is constant too. So we hear the 
same pitch. Of course, the timbre is the 
same since from cycle to cycle we have the 
same repeated waveform. The timbre or 
waveform for the wave in Fig. E-1 is a sine 
wave, the simplest of all periodic waves.

 
 
Fig. E-1. A Simple Sine Wave Before Modulation. 
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E-3

Fig. E-2b is an amplitude-modulated 
sine wave. It results from taking the sine 
wave in Fig. E-1 and varying the amplitude 
according to the sketch in Fig. E-2a. 
Imagine sliding the sine wave of Fig. E-2a 
down so that it fits snugly on top of the 
amplitude-modulated wave of Fig. E-2b. 
Fig. E-2a tells us how the amplitude is 
changing. 

We note two things here. First, the 
amplitude of Fig. E-2a changes smoothly, 
but it is a new sine wave. Second, this sine 
wave has a frequency, which we call the 
modulating frequency, that is much lower 
than the frequency of the basic wave (Fig. 
E-1). Compare the wavelength of Fig. E-2a 
with the wavelength of Fig. E-1 to confirm 
this. 

 
Fig. E-2a. Amplitude Change for Amplitude-Modulated Sine Wave in Fig. E-2b. 
 

 
 
Fig. E-2b. Amplitude-Modulated Sine Wave. 
 

 
Therefore, the waves of Fig. E-1, Fig. E-

2a, and Fig. E-2b are related. The basic 
wave found in Fig. E-1 is called the carrier 
wave or simply the carrier. It is the wave 
that experiences a change imposed on it. 
The wave in Fig. E-2a is called the 
modulator wave or simply the modulator. It 
describes how the changes are made. 
When this modulator is applied to the 
amplitude, the amplitude changes in step 
with it. The result is the amplitude-
modulated wave, Fig. E-2b. 

An easy way to keep all of the above 
straight is to image a simple flute playing a 
constant tone from your CD player. We can 
assume that the flute produces a sine 
wave. You hear the same pitch and 
loudness as the flute continues with the 

same note. Fig. E-1 can represent the flute 
tone. This is the carrier wave. Then you 
take your hand and turn the volume control 
up and down in a natural way (sine wave). 
Your hand motion is described by the sine 
wave in Fig. E-2a. This is the modulator 
wave. Note that since your hand can't 
wiggle back and forth very fast, this 
modulator wave has a long wavelength and 
therefore low frequency. The frequency is 
so low that you never hear sound when you 
wiggle your hand back and forth. The result 
you hear is the flute tone with pulsations in 
loudness. After all, you are changing 
(modulating) the amplitude. The resulting 
wave is described by Fig. E-2b. Musicians 
call this pulsating tone tremolo. 
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In AM Radio broadcasting, a radio wave 
is sent to your home. A radio wave is not a 
sound wave; it is a wave involving electric 
and magnetic interactions. The frequency of 
these waves is very high, like millions of 
cycles per second. The frequency of a 
station's transmitted AM radio waves is 
obtained from the number the radio 
announcer constantly reminds you to tune 
in to. For example, WISE 1310 broadcasts 
at 1310 kHz (kilohertz). 

The lower-frequency sound information 
is coded in the amplitude variation of this 
radio wave. In this analogy, Fig. E-1 
represents the radio wave, Fig. E-2a 
represents a sound frequency such as a 
whistling tone. As the radio travels through 
space, there is no sound. The sound 
information is transmitted as the amplitude 
variation. It is said that the radio wave 
carries the sound information. That's why 
we call the basic wave the carrier. 

Radio carrier waves can travel in the 
vacuum of outer space. They are a very 
special kind of waves called 
electromagnetic waves. Electromagnetic 
waves do not need a medium in which to 
travel. Light is also an electromagnetic 
wave. 

The sound information is extracted by 
your AM radio. Your radio gets the audio 
information from the variations in the 
amplitude. You have probably guessed by 
now what AM stands for - amplitude 
modulation. 

 Think carefully about our two analogies. 
In the first case, your hand-wave frequency 
modulates a sound wave. In the second 
application, a sound-wave frequency 
modulates a radio wave. The modulator 
effect on a carrier's amplitude can be 
understood by multiplying waves. 

We have seen how to add waves. We 
will review wave addition and then take up 

wave multiplication. Fig. E-3a reviews wave 
addition. Think of the addition in 4 stages. 
For the 1st stage or quarter, both the top 
wave and bottom wave in Fig. E-3a have 
displacements of 1. Therefore, the total 
displacement for that region is 1 + 1 = 2. 

Then we combine −1 with +1 for the 2nd 

quarter to obtain −1 + 1 = 0. 
For the 3rd and 4th quarters the lower 

wave is 0. We can just sketch the top wave 
for the sum here. Adding nothing leaves the 
wave alone. Note that the amplitude of the 
top wave in Fig. E-3a is 1. The 
displacement of the wave changes as we 
go through ups and downs (crests and 
troughs). But the definition of the amplitude 
calls for a measure from the equilibrium to 
the highest point. If the amplitude 
(maximum displacement) changes from 
cycle to cycle, we then have amplitude 
change or modulation. 

For multiplication, we multiply the 
appropriate pairs of numbers instead of 
adding. For the first and second quarters, 
the upper wave is untouched since the 
lower wave has a value of 1 in this region. 
Refer to Fig. E-3b. Multiplying by 1 doesn't 
change anything. 

However, the situation is quite different 
for the third and fourth quarters where the 
lower wave has a value of 0. Multiplying by 
zero gives zero. The upper wave is wiped 
out in this latter region. The lower wave 
acts like a gate. It allows the upper wave to 
survive when the lower wave has a value of 
1 (gate is open). 

Then, when the lower wave has a value 
of 0 (gate is closed), there is no surviving 
wave. This effect is called gating. It's 
important in music synthesizers. When you 
press a key, you get something; when you 
release the key, the tone is destroyed. 
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Fig. E-3a. Wave Addition. 
 

 
 
Fig. E-3b. Wave Multiplication. 
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We will now relate wave multiplication to 
amplitude modulation. We will use the pulse 
train wave as the carrier and a triangle 
wave as the modulator. See Fig. E-4 below. 
Don't be concerned that the reference line 
is at the far bottom here. In the analysis of 
waves, the reference can be freely chosen 
to simplify the way of looking at the 
problem. You might say we introduce an 

offset, i.e., offset the horizontal line at our 
leisure. 

In the electronic production of waves, 
this is referred to as a voltage offset. 
Physicists play the same game analyzing 
falling objects. Sometimes, the ground is 
called the zero point for height. If a ball falls 
to a table, then the table is taken to be the 
zero point. 

 
Fig. E-4a. Pulse-Train Carrier and Triangle Modulator. 
 

 
 
Fig. E-4b. Result When the Modulator Modulates the Amplitude of the Carrier (see above). 
 

 
It is too tedious to multiply the carrier 

and modulator in Fig. E-4a point by point to 
arrive at the amplitude modulation in Fig. E-
4b. Rather, let's reason it out. The triangle 
wave starts out at zero. This means the 
carrier is knocked out at the beginning 
since zero times anything is zero. Now look 
at the middle of the above triangle. The 
triangle is high. Consider this top point to be 
1, 100% full strength. The effect on the 
carrier is to leave the carrier alone here: 
one times the carrier equals the carrier. 
Between the beginning and this high point, 
the modulator gradually increases. So we 
sketch the carrier's crests gradually 

increasing from the beginning to this point 
(see Fig. E-4b). The reverse happens for 
the decreasing side. 

Consider a "cookie-cutter" analogy. 
Take the modulator shape in your mind and 
place it over the carrier. Imagine the carrier 
to have crests of "dough." Then slice the 
"dough peaks" with the modulator "cookie 
cutter." You have modulated the amplitude. 

The previous modulation can be 
demonstrated by playing a tape of a pulse-
train wave with your tape deck. Imagine a 
somewhat harsh tone with a fixed pitch. 
You then manipulate the volume control, 
i.e., modify the loudness. You gradually turn 
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the volume up from the zero level to some 
maximum, then turn the volume off. 

However, you are not turning the knob 
in the most natural wave (the sine wave or 
sinusoidal motion). Your turning is 
described by the triangle wave. 

Try moving your hand across a sheet of 
paper with a pencil in it. Begin moving your 
hand up and down in a "triangular" sort of 
way. See if you can do it. Remember to 
keep the sweep speed across the paper a 
constant rate. Your sweeping hand will 
trace out the wave the way the oscilloscope 
draws pictures of waves. 

When the oscilloscope gets to the far 
right in its sweep, it starts over. Its 
electronics is designed so that it can retrace 
its steps for a nice periodic tone. The 
retrace gives us a steady picture on the 
screen. However, when the input wave is 
very low in frequency, like a typical 
modulator frequency, you can often see a 
bright dot wiggling across the screen. For 
faster frequencies, the retrace gives a 
complete picture due to the lit screen 
glowing for a split second and our 
persistence of vision. Persistence of vision 

is our retention of the previous image seen 
for a fraction of a second. It's what makes 
movies possible. 
 
Frequency Modulation 
 

We will now apply the same modulator 
used in Fig. E-2a, but not to change the 
amplitude of the sine wave in Fig. E-1, but 
to change its frequency. The resulting 
frequency modulation is given in Fig. E-5. 
There isn't a simple way to get this 
modulated picture by some arithmetic 
manipulation. We simply sketch the result. 

When the modulator wave is high in its 
value (crest), this means increase the 
frequency, i.e., shorten the wavelength. 
Before (with amplitude modulation) we 
increased the amplitude, now we increase 
the frequency. When the modulator dips to 
a trough, we decrease the frequency, i.e., 
lengthen the wavelength. So we can also 
call this wavelength modulation. FM radio 
encodes its information this way. FM stands 
for frequency modulation. With FM radio, 
the carrier is once again a radio wave. 

 
 
Fig. E-5. Modulator (Upper Wave) Modulating Frequency to Get FM Wave. 
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We continue our application in the area 
of radio broadcasting. The modulator wave 
in Fig. E-5 can represent the sound wave 
we are to broadcast. The radio station is 
playing a tape with a perfect sine wave. It 
can be the sine wave of a whistling 
constant tone. Whistlers can produce good 
sine waves. The information is encoded by 
varying the frequency of the carrier radio 
wave. 

The carrier waves for frequency 
modulation are greater than those used for 
amplitude modulation. For example, our 
classical station, WCQS, broadcasts at 88.1 
million hertz. The metric prefix for million is 
Mega, so we can write this as 88.1 MHz 
(Megahertz). Our earlier example for an AM 
station was WISE at 1310 kHz, which is 
1,310,000 Hz or 1.31 MHz. 

The frequency 88.1 MHz is reserved for 
WCQS. Also, some frequencies a little less 
and a little greater are also reserved 
because the 88.1-MHz radio wave will be 
frequency modulated. This band of 
frequencies is called that station's 
bandwidth. The center is 88.1 MHz. 
Another example of an FM station is Kiss 
Country at 99.9 MHz (WKSF). If country is 
not your style, try its neighbor Mix 96.5 
(WOXL) at 96.5 MHz on the radio spectrum 
for a mixture of music. 

We stress that sound waves are not 
broadcasted. Radio waves are sent to your 
home. The sound information is encoded in 
the frequency modulation. The station's 
radio wave undergoes variations in 
frequency at the rate of the audio frequency 
it's carrying. For example, a 400-Hz sound 
wave is encoded by WCQS by varying the 
frequency of  the 88.1 MHz carrier at the 
rate of 400 Hz. Your FM radio extracts this 
information using an FM radio circuit. 

Why do you think FM radio reception is 
better than AM? Which part of the carrier is 
more susceptible to distortion or 
deterioration - the amplitude or frequency? 
Remember that the valuable information is 
encoded in the amplitude for AM broadcast 
and the frequency for FM broadcast. HINT: 
When you comb your hair in your car during 
a dry winter morning, static readily affects 
the amplitude. 

A sketch of the front panel of an AM-FM 
Radio is given in Fig. E-6. Note that the FM 
numbers are given in MHz while the AM 
numbers are in kHz. Also note that the 
numbers are not equally spaced on the AM 
scale. That's because the same dial control 
is used for both and the spacing reflects the 
numbers dictated by the AM circuit. Did you 
ever notice this? Then again, you might 
have a digital radio and never deal with 
turning a tuning knob. 

 
Fig. E-6. FM and AM Radio. 
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You can actually do a frequency-

modulation yourself. On a synthesizer, you 
vary the control that alters the frequency. 
This is the pitch-bend control. First, press a 
key to play one note and keep the key held 
down. Then vary the pitch-blend control just 
a little at some periodic rate. Your 
frequency will increase slightly and then 
decrease in a periodic fashion. 

If you do not have a synthesizer, you 
can sing a tone and try varying the 
frequency with your voice. Musicians call 
this vibrato. It sounds like a quiver. 

We will shortly see a variety of 
examples of frequency modulation from 

everyday life. We now give the picture for a 
triangle wave modulating the frequency of a 
pulse train. In Fig. E-4 we encountered the 
result when a triangle wave modulates the 
amplitude of a pulse train. Fig. E-7 provides 
us with the same carrier and modulator as 
Fig. E-4. However, now the modulator 
works on the frequency rather than the 
amplitude. Employ the same reasoning as 
we used in understanding Fig. E-5. Higher 
frequency is evident by shorter wavelength. 
When the modulator wave has a high value, 
look for shorter wavelengths in the carrier.

 
Fig. E-7a. Pulse-Train Carrier and Triangle Modulator. 

 
 
Fig. E-7b. Result When the Modulator Modulates the Frequency of the Carrier (see above). 
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 Table E-1 below gives a variety of 
sounds from everyday life. These sounds 
can be approximated by frequency 
modulation. The carrier wave is in the 
audible range. Low means bass, pitches 
near the bottom of the piano, medium is 
around the middle of the piano, and high is 
near the top. The carrier should be a 
square wave for the best results overall. It 
gives the carrier some richness, yet not too 
much. 

Modulator frequencies are very low, 
below the threshold of hearing. Use your 
vibrating hand as a guide. Shaking at a low 
frequency is about 1 Hz (once per second). 
A medium modulator is a quiver at about 4 
Hz. A high modulator is changing at a 
greater frequency, perhaps as high as 10 
Hz or more. This is a rough guide in 
interpreting Table E-1. 

 
Table E-1. Frequency Modulation in Everyday Life. 
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   Consider a low modulator changing the 
frequency of a low carrier (Table E-1). The 
example in the table for these conditions is 
trying to start a lawn mower. As you pull on 
the cord, the engine starts to increase its 
rotational speed. But often it doesn't start 
and begins to slow down. You keep pulling 
the cord every second or two (the low 
modulator) and the engine increases and 
decreases its turning rate in the slow realm 
(low carrier frequency) until it starts. 

For the case of a medium carrier, we 
use a running car about to stall. The engine 
is turning slowly, in the low-carrier audio 
spectrum, but higher than the lawn mower. 
Low carrier simply means low audible 
frequencies. There is variation in the engine 
speed as it slows down threatening to stall, 
then speeds up. Imagine this variation 
(medium modulator) happening at a rate 
faster than your repeated pulling on the 
lawn mower cord. But remember that the 
medium modulator has a frequency of still 
only about 4 or 5 Hz. 

On the other hand, the low carrier 
frequency is much higher than this. Audible 
frequencies are higher than the modulator 
frequencies in Table E-1. Finally, consider 
the uneven running of an engine (still at a 
low carrier value of rotations per minute, 
i.e., rpm), however, with more rapid 
variations (higher modulating frequency). 

The next group of three (going across 
from left to right) in Table E-1 is the middle 
group with a medium carrier frequency. The 
first example is the long siren. It takes 
awhile (low modulator frequency) to sweep 
through different frequencies of the siren 
carrier wave (medium or mid-range carrier 
frequency). Once the author was freaked 
out as a child in Camden, NJ when he 
suddenly heard at night a slowly-varying 

siren from the desolate Philadelphia 
shipyard nearby. Increasing the rate of 
change for our siren brings us to the police 
siren. The changes are more rapid (medium 
modulator) and the carrier is once again in 
a middle frequency range, like our other 
siren (which makes it easier to hear). 
Changing a medium carrier very rapidly 
mimics the sounds in arcade or video 
games. 

The final group of three at the bottom of 
Table E-1 takes us to high carrier 
frequencies. These are high pitches. The 
slide whistle is an example of changing a 
fairly high-pitched tone slowly. The change 
occurs as the player slowly moves the 
sliding part of the whistle in and out. If the 
variation is more rapid, we obtain sounds 
that approximate singing birds. We may 
have to start with a carrier even higher in 
frequency than the slide whistle. Our table 
is approximate and it is understood that you 
may have to search for the best frequencies 
in each case. If we vary the high carrier 
really fast (high modulator), the sound 
resembles crickets. 

Some of the sounds in Table E-1 are 
very effective when demonstrated 
electronically using a square wave for the 
carrier. The actual waveform for the 
modulator is not that critical. However, a 
triangle wave works well. The triangle 
modulator makes nice sliding-whistle tones 
and sirens. A factor that we didn't mention 
is the extent of the sweep. When we 
change a 500-Hz carrier wave once a 
second, do we sweep up to 505 Hz or 600 
Hz every second? If we sweep very little, 
staying close to the original carrier 
frequency, the resulting sound is more of a 
quiver (vibrato). If we sweep a fair amount, 
we have our siren sounds. 

 



Copyright © 2012 Prof. Ruiz, UNCA E-12 

Timbral Modulation 
 

The final basic characteristic to change 
is the timbre. The pulse train is an excellent 
waveform to work with. A simple way to 
vary the waveform is to increase the width 
of the pulses. In other words, change it into 
a square wave and back, in some periodic 
fashion. Note that this is only one way to 
vary the waveform. It is simple conceptually 
and electronically. This particular type of 
timbral modulation is called pulse-width 
modulation. See Fig. 8 below. 

When the triangular modulator has a 
maximum value, we now interpret this to 

mean the widest pulse widths. Think of the 
pulse train as an array of buildings. A large 
modulator value means that we have a 
wide building at that point. Note that all the 
buildings have the same height (amplitude) 
and are equally spaced (wavelength, 
frequency). It's the widths of the buildings 
that change. The lower values of the 
modulator indicate narrower buildings or 
pulse widths. We decide to let a zero 
modulator value signify a minimum pulse 
width rather than no pulse width. Our spirit 
is qualitative; and remember, there is 
freedom in choosing the zero-reference 
point. 

 
 
Fig. E-8a. Pulse-Train Carrier and Triangle Modulator. 
 

 
 
 
Fig. E-8b. Result When the Modulator Modulates the Pulse Width of the Carrier (see above). 
 

 
 
 

Timbral modulation is heard when the 
quality of the sound changes in an intrinsic 
way, not the loudness or pitch, but the very 
nature of the sound. This occurs 
dramatically when a trumpet player moves 

a mute in and out at the bell end while 
holding a note. Try singing vowel sounds at 
the same loudness and pitch. As you 
change each vowel, you change the timbre. 
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Pulse-width modulation sounds like 
buzzing bees. We will try to understand 
why. Similar bees produce similar sounds. 
We can assume the bees are identical so 
the waves are identical in amplitude, 
frequency, and waveform. But different 
parts of these identical waves reach our 
ears at any given time. Perhaps a crest 
(compression) reaches an ear from the 15th 
bee, while the point 60% of the way up the 
crest reaches the same ear from the 20th 
bee, and so on. 

This brings us back to the concept of 
phase. Remember that when two crests 
overlap, we say the waves are in phase. 
When a crest meets a trough from another 
wave, we say the waves are out of phase. 
The relationship among the waves of our 
many bees is complicated. There is no 
simple phase relation. The phases are all 
mixed. There are all possible cases in 
between in-phase and out-of-phase. This 
sound of mixed phases from similar 
sources has a distinct quality. It's called the 
chorus effect. The bees are singing 
together like a choir. 

The rapid changes of the pulse width in 
our pulse-width modulation is a crude 
approximation to superimposing many low-
intensity square waves on top of each 
other. The random shifting phases are 
approximated to some extent by the shifting 
width of the pulse wave. Therefore, the 
pulse-width modulation sounds like a 
buzzing choir of bees. 

The distinct sound of the chorus effect is 
very different from the sound of a single 
source. We can pick out a solo instrument 
such as a violin if it plays something 
different from the rest of the violins. 
Therefore, you can usually hear the soloist 
in a violin concerto against the background 
of many violins playing in unison. Of 
course, the conductor keeps the violin 
section from overpowering the single 

soloist. Nevertheless, the chorus effect is 
relevant and likewise plays an important 
role. The mixed phases of the violins 
playing in unison are heard as a different 
sound than a solo melodic line. 

The common example of the chorus 
effect is people singing in unison. They can 
also recite in unison. A less common 
example of the chorus effect is the group 
sounds of cicadas (sih-KAY-duhs).   
 
Fig. E-9. Cicada. 
 

 
Courtesy www.artsjournal.com 

 
Hordes of cicadas are not around every 

year. A common type of cicada (see Fig. E-
9) returns every 17 years. They live 
underground sucking nourishment from 
roots until they are mature. They then come 
out in the thousands. Males make sounds 
to attract females. You can turn down a 
side street and often be surprised at the 
tremendous cicada chorus effect when you 
run across hordes of them in trees. This 
lasts for only a few weeks. The adults die 
after mating and the new generation waits 
underground for the next cycle of 17 years. 

A group made a riot of sound in 
Asheville in 1991. The party of the next 
generation of cicadas was held in 2008. 
However there is more than one type of 
cicada. Some return at different time 
intervals. 
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The three basic types of modulation 
encountered in this chapter are 
summarized below in Fig. E-10. You will 

recognize these as figures found earlier in 
the chapter. They are reproduced here for 
review and comparison. 

 
Fig. E-10. Three Basic Types of Modulation. 
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Balanced Modulation 
 

Earlier we mentioned that the vertical 
position of the wave could be freely chosen. 
We did that to simply our multiplications so 
that one wave would be at height 1 or 
height 0. You still have balanced 
modulation. However, if we are very careful 
to have the zero level go through the center 
of each wave, then we then have balanced 
amplitude modulation. We will illustrate that 
here. 

Balanced modulation is amplitude 
modulation where the two waves have the 
zero-reference line running through the 
center of each wave. In Fig. E-11 balanced 
amplitude modulation, or simply balanced 
modulation, occurs in the right case. At the 
left, we have amplitude modulation, but the 
waves are not balanced. To be balanced, 
the red line at zero must go through the 
center of each wave. 

 
Fig. E-11. Amplitude Modulation (Multiply in Each Case). Unbalanced (left), Balanced (right). 

 
Here is a summary of the four 

possibilities for multiplication in balanced 
modulation. See Table. E-1. We can 

summarize these multiplications in Table E-
2 where HIGH represents crest, a value of 
+1 and LOW is a trough, a value of -1. 

 
Table. E-1. The Cases of Multiplication. Table E-2.  Input A and B with Output. 

 
 

 
 
 
 
 

 
--- End of Chapter E --- 

A. Top 
Wave  

B. 
Bottom 
Wave 

Output 
Wave 

HIGH HIGH HIGH 

HIGH LOW LOW 

LOW HIGH LOW 

LOW LOW HIGH 
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F. Frequency Ratios 
 
   

We study in this chapter the 
fundamental topic of frequency ratios. A 
frequency ratio is relevant when we 
consider two tones. Some combinations are 
pleasant, others are unpleasant. The 
absolute frequency is not important. It is the 
relative frequency that is significant. You 
know this. For example, you can sing a 
song like Mary Had a Little Lamb. Then you 
can start the song again at a slightly higher 
pitch. You will unconsciously adjust all the 
subsequent pitches to their proper relative 
positions so that the song once again 
sounds like Mary Had a Little Lamb. You 
have preserved the song. This is called 
transposing. 

Pianists are often asked to play the 
same song starting at different pitches in 
order to accommodate singers. The pianist 
is said to transpose the song into another 
key, i.e., another starting point. The word 
transpose is used because the song is 
often written in a different key. The 
musician is not reading the music, not 
playing where it is written, but transposing 
to a different key. This takes practice. Of 
course, if the pianist can play by ear, music 
is not necessary in the first place. 

Over the ages people of different 
cultures have chosen tones that coordinate 
well with each other. These groups of tones 
are called scales. We will work with the 
western major musical scale in this chapter. 
This is the scale you learned many years 
ago: Do-Re-Mi-Fa-Sol-La-Ti-Do'. It's all the 
music you need to know in order to 
understand this text. You probably learned 
it in kindergarten. You see, kindergarten is 
very important. You learn about scales, 
among other important activities like 
relating to others. Someone once said that 
you learn in kindergarten everything you 
need to succeed in life. 

The musical scale can start on any 
pitch. You sing Do anywhere you like and 
then proceed to sing the other tones 
accordingly. Once again, the relative pitch 
is important for the study of the coordination 
of these tones. Therefore, we will compare 
the frequencies by ratios. Ratios are not 
complicated. Let's use a monetary analogy. 
You may have $150 and your friend has 
$300. Well, we only care that your friend 
has twice as much as you if we are only 
interested in the ratio. We can say that you 
have a given amount, which we describe by 
1. The "one" simply means the money in 
your pocket, your "one" pocket of money. 
Then we say your friend has 2, meaning the 
equivalent of 2 times what you have. Your 
friend has "two pockets" of money in a 
sense. Another person might have 3 or 4 
times what you have. We are comparing 
amounts of money with what you have. The 
numbers are therefore ratios. 

We will proceed first by reviewing the 
musical scale. We will develop the concept 
of musical intervals. We will develop a trick 
where we can readily tell which note in the 
scale is played relative to our reference 
note Do. Secondly, we will develop a 
technique for measuring frequency ratios. 
This is the subject of Lissajous (LISS-uh-
joo) figures. Thirdly, we will apply this 
technique to determine the frequency ratios 
for the tones in our 8-note musical scale. 
But we will work backwards at that point. 
We will first search for tones with simple 
ratios. Then we will discover that these 
notes are in our scale. The scale we unfold 
will be based on perfect ratios. In a later 
chapter we will learn that, today, our 
instruments are not tuned perfectly to such 
a scale. Compromises are made. 
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Musical Intervals 
 
   Let's review a couple of definitions before 
we investigate musical intervals. Frequency 
is a measure of how rapidly vibrations 

occur. The frequency of a sound wave is 
perceived as pitch. A musical scale is built 
from a set of frequencies called tones or 
notes. 

 
 

Frequency (pitch) - number of vibrations per second (hertz, Hz). 
 

Musical scale - a discrete set of frequencies (tones or notes). 
 
   

The common major scale is illustrated 
below in Fig. F-1. There are eight tones in 
the scale. These are numbered in the 
figure. It will be convenient for us to refer to 
a tone by its number from time to time. The 
first note is Do, the second note is Re, and 
so on. We call the last note Do' to 
distinguish it from the first note, Do. 

You will find musical notation below the 
keys in Fig. F-1. You do not need to worry if 
this is the first time you have seen such a 
thing. Consider it like a thermometer that 
indicates pitch without using numbers. This 
"musical thermometer" is called a staff. The 
higher up on the staff, the higher the pitch 
of the note. In other words, the higher the 
frequency, the higher the position. But don't 
think about numbers. The notes, of course, 

have numbers to define frequencies, but 
the spacing on the musical staff does not 
correspond to them in some simple fashion. 
Remember the AM numbers on our radio. 
They were spaced unevenly. Such a 
spacing where equal steps in distance do 
not correspond to equal steps in frequency 
is called a nonlinear scale. 

The beauty of the nonlinear musical 
staff is that each note of our scale is equally 
spaced by position, not frequency. The 
tones alternately fall on lines or spaces. 
Notice the short line necessary to indicate 
the first note. The symbol at the left of the 
staff is called a clef symbol. Ours is a treble 
clef, meaning tones in the upper half of the 
piano. 

 
 
Fig. F-1. The Major Scale. 
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We take the first note as our reference 

tone. We will compare the other notes to 
Do. For example we may compare Sol to 
Do. Moving from the reference Do up to 
Sol, we move up to the 5th note. Musicians 
say we move up a 5th. If you press these 
two keys together, you are playing an 
interval called the 5th. If you choose to play 
the 4th note (Fa) with the reference (Do), 
you are playing a 4th. Going from Do to Fa 
defines an interval of a 4th. So an interval is 
really the "musical distance" between two 
notes. We will always start on the Do. 

Since we jump from Do to another note, 
it can be difficult to recognize the upper 
note if someone plays one for us and asks 
us to identify it. Music teachers have come 
up with a technique to help us do this fairly 
accurately with a little practice. We use the 
old trick of remembering the start of a song 
for each of the jumps. Then, when we hear 
a jump, we scan through the songs in our 
head until we find a match. The actual 
practice of doing this is called ear training. 
Table F-1 below lists the 8 intervals and a 
song to help us recognize each of them. 

 
 
Table F-1. Intervals. 
 

 
 

As an example, consider the interval of 
a fourth. This corresponds to playing the 
first note Do as always and then the 4th 
note Fa. These notes come at the 
beginning of the bridal march by Wagner, 
played at the start of weddings. These 

notes may be played simultaneously to 
perceive how well they blend. Are they 
pleasing? We will answer such questions in 
section F-3. The 7th in "Superman" does 
not come at the very beginning of the 
theme. 
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Lissajous Figures 
 

Lissajous (LISS-uh-joo) figures are part 
of the language of the scientist, i.e., 
physicist or engineer. We have just 
discussed components of the language of 
the musician. In this section we turn to 
physics. Then in the third section we 
combine both the musician's and physicist's 
techniques in a wonderful experiment to 
determine the frequency ratios of the 
perfect major scale. 

Our analysis will have a blend of 
mathematics, physics, perception, music, 
esthetics, and even philosophy. The Greek 
mathematician and mystic, Pythagoras, 
was one of the first to study the esthetics of 
pleasing tone combinations. He showed 
that tones with the simplest mathematical 
ratios were the most pleasing. This had 

profound philosophical implications for him. 
He discovered that one way to understand 
the beauty and harmony of nature is 
through mathematics. The methods we 
develop here will enable us to pursue the 
study of harmonious combinations of tones. 

We will explain Lissajous figures by 
example. Consider a party game where you 
are given two sets of instructions for 
walking on a floor, the playing field. One set 
of instructions tells you how to move East 
or West, which we call right-or-left, while 
the other tells you how to move North or 
South, which we simply call up-or-down. 
You must move simultaneously according 
to both instructions. Fig. F-2a below shows 
our first game. The instructions are at the 
left in graphical form, while the playing field 
is pictured at the right. R stands for Right, L 
for Left, U for Up, and D for Down. 

 
 
Fig. F-2a. Lissajous Figures: Case I. 
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The game proceeds in four phases or 

quarters. The horizontal instructions tell you 
how much to move left or right, while the 
vertical instructions tell you how to move up 
or down. For the 1st quarter, your horizontal 
instructions tell you to start in a position 
neither right nor left, then proceed 4 paces 
(blocks) to the right. Now you must do this 
while at the same time following the vertical 
instructions, which tell you to move 4 paces 
up (from the center) during the 1st quarter. 
To perform both of these actions 
simultaneously, you walk along a diagonal 
to a destination that is to the right and up. 
The 2nd quarter calls for you to come back 
to the center position, a position neither 
right nor left, neither up nor down. The 3rd 
quarter has you going to the left and down 
at the same time. The 4th quarter instructs 
you to come back to the center. 

But why are we doing this? Why play 
the party game? Play one more game 

before we delve into this. See if you can 
understand the pattern traced out on the 
playing field in Fig. F-2b below. Note that 
the horizontal wave is the same as before. 
The vertical wave is a similar wave but 
shifted. It's not completely out of phase 
(180° out of phase), but halfway there. We 
say it's 90° out of phase. The traced pattern 
tells us the frequency ratio of the vertical 
and horizontal waves. You just count the 
number of points at the top and the number 
of points at the right. From Fig. F-2b, the 
answer is 1 in each case. So the 
frequencies are the same. In Fig. F-2a, the 
frequencies are also the same. There is 
one point at the top and at the right (same 
point). We plan to send two tones into the 
oscilloscope which is set in Lissajous mode. 
Then by counting the points at the top and 
at the right, we obtain a comparison of the 
two frequencies! 

 
 
Fig. F-2b. Lissajous Figures: Case II. 
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You may be a little confused. So is 
everybody when they learn a new game for 
the first time. What should you do? Play 
another game. By the end of the third 
game, things will become clear. Refer to the 
third case in Fig. F-2c below. The 
instructions indicate that you start in the 

center. For the 1st quarter, you move to the 
right and go up and down at the same time. 
Then you move to the left and go down and 
up for the 2nd quarter. Refer to the diagram 
at the right to see these sections of the trip. 
Can you figure out the paths for the 3rd and 
4th quarters? 

 
 
Fig. F-2c. Lissajous Figures: Case III. 
 

 
 

Now for the analysis. We already know 
the answer for the frequency comparison. 
The vertical wave has twice the frequency 
as the horizontal. The vertical wave has two 
complete cycles in the four quarters of our 
game time while the horizontal wave has 
one complete cycle. How can we figure this 
out from the game board at the right in Fig. 
F-2c? We compare the number of points at 
the top to the number of points at the right. 
The comparison is 2 to 1. We write this as 
2:1. As you trace out the combination of 
vertical and horizontal oscillations, you 
reach the top two times for every time you 

reach the far right. That means your vertical 
frequency is twice the frequency of the 
horizontal. 

We use Lissajous figures electronically 
to determine the vertical frequency 
(unknown) relative to our horizontal or 
reference frequency. However, since it's 
hard to lock in on the phases, the waves 
drift. Sometimes we get the baseball 
diamond for our 1:1 case (Fig. F-2b), 
shifting into the line of Fig. F-2a as the 
phases change. The shifting pattern is 
perceived as a rotation. 
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The Just Diatonic Scale 
 

We are now ready for our big 
experiment. We set our oscilloscope to 
Lissajous mode and connect two tones to it. 
The reference tone Do is connected to the 
horizontal input. The tone that we will 
change and measure relative to the 
reference is connected to the vertical. It is 
interesting to turn the sound off and just 
work with the patterns. We scan the vertical 
until we get nice patterns. These have 
simple ratios like 2:1 or 3:2. For the ratio 
3:2 (read as 3 to 2), we find 3 points at the 
top and 2 at the right side. 

This indicates that the vertical travel is 
up and down 3 times during the time it 
takes to go back and forth 2 times along the 
horizontal. Relating to money,  it's the case 
where your friend has 3 half-dollar coins 
and you have 2. The ratio is 3 to 2. You 
have 100 pennies worth of money and your 
friend has the equivalent of 150 pennies. 

As we continue along these lines we 
find that simple ratios like 2:1, 3:2, 4:3, 5:4 
etc. sound pleasant. We also discover that 
these tones are in the major scale! For 
example, suppose we look at the 2:1 case. 
We play the reference note, then the 
vertical input, which we know is twice the 
frequency as the reference. As we listen to 
the reference (horizontal) and then the tone 
on the vertical played right after the 
reference, we recognize the beginning of 
Somewhere Over the Rainbow. So we 
know we have the octave. The octave 
higher than Do is the note Do' and it has 
double the frequency of the lower note Do. 

This is one of the discoveries of 
Pythagoras. However, Pythagoras 
experimented with strings of different 
lengths. We are using electronic tone 

generators and an oscilloscope. Pythagoras 
would be impressed. 

Fig. F-3 illustrates our use of the 
oscilloscope to obtain a Lissajous figure. 
We send in our reference tone Do into the 
horizontal input. The unknown tone that we 
can vary is sent to the vertical input. We 
turn the knob on the oscillator of our 
unknown tone until we get a nice pattern. 

A nice pattern has been found in Fig. F-
3. The pattern has rounded edges because 
we are using sine waves here instead of the 
triangle waves of Fig. F-2c. However, we 
can still count the number of times the wave 
reaches to near the "ceiling" - two times. 
The number of rounded extremes at the far 
right is just one. So we conclude that the 
vertical wave is twice the frequency of the 
horizontal wave. The ratio is 2 to 1, i.e., 2:1. 
We play these two tones and we hear the 
beginning to Somewhere Over the 
Rainbow. The interval defined by Do and 
the unknown tone is an octave. So the 
vertical tone is Do'. 
 
Fig. F-3. Lissajous Figure with Oscilloscope 
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The results for several tones are given 
in Fig. F-4. Note that the ratio is 1:1 when 
both tones are the same. The unison is 1:1, 

the octave is 2:1, the fifth 3:2, and the 
fourth 4:3. These are the most pleasing 
tone combinations. 

 
Fig. F-4. Lissajous Figures and Frequency Ratios for Some Tones of the Major Scale. 
 

 
 

 



Copyright © 2012 Prof. Ruiz, UNCA F-9 

The most pleasant combinations of 
tones are listed in Table F-2. Tones are 
said be consonant when pleasant, and 
dissonant otherwise. However, there are 
degrees of consonance and dissonance. 
The most consonant combination is 
obviously when both tones are the same. 
This is the unison. The frequency ratio is 
1:1. The next best is the octave. When the 
8th tone of the scale is played with the 
reference tone Do, it sounds so pleasing 
that the 8th tone is also named Do. We use 
the name "Do-prime" (Do') to distinguish 
this higher Do from the lower one. Many 
composers use octaves in writing for the 
piano. They are impressive when played 
quickly by one hand. The flashy 19th-
century composer-pianist Franz Liszt often 
dazzled audiences with rapid octaves. 

Next in line for consonance is the fifth, 
with a ratio of 3:2. The next best 
consonance is the fourth, with a ratio of 4:3. 
The amazing feature of Table F-2 is that the 
listing of consonances from best on down is 
grounded in mathematics. The simplest 
numbers are chosen to make these ratios. 
There is a pattern. In fact, the table 
suggests that the next to be investigated is 
the case with a ratio of 5:4. That 
combination is the result for the interval of a 
third (Do-Mi). You can now appreciate the 
wonder of Pythagoras as he discovered the 
mathematical foundation of musical 
esthetics. The pleasing or harmonious 
intervals are described by elegant 
frequency ratios. 

 
Table. F-2. The Most Consonant Tone Combinations (Tuning to Perfect Intervals). 
 

 
 
  

Today we do not use perfect intervals 
for tuning except for the octave. However, 
the tuning is close to the ratios given in 
Table F-2. The reason for this will be 
explained in a later chapter. 

Music theory for composition and 
harmony incorporates the essence of Table 
F-2. The following analysis applies to 
harmony, not the melody line. The most 
pleasing combination consists of the same 
notes. However, if you just play the same 
note, you do not go anywhere. The next 
best change is to go to the octave. 
However, this change sounds so close to 
the reference (Do) that there still doesn't 

appear to be any (significant) change. The 
next best is movement by a fifth. This is a 
most pleasing change. Over the years, 
musicians have dressed up this change by 
adding related notes to support it and bring 
it out so to speak. Related notes when 
played together are called chords. 

Chord changes by fifths serve as the 
basis for music theory. The musical palette 
of fifths is referred to as the cycle of fifths. 
The author's jazz teacher at the University 
of Maryland once said (c. 1975) that 80% of 
popular music consists of chord (harmonic) 
changes that are fifths. 
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Frequency ratios for the most consonant 
intervals are illustrated in Fig. F-5. Once 
again, note the elegance of the 
mathematics. If you take the frequency for 
Do to be 100 Hz, then the octave is twice 
this, i.e., 200 Hz. The fifth is 150 Hz 
(remember our earlier discussion of the 3:2 
ratio with money). The 4:3 ratio gives a 
frequency of 133 Hz. Can you explain why? 

The 5:4 ratio gives a frequency of 125 
Hz. The 5 to 4, in terms of our money 
example, translates to your having 4 
quarters and your friend 5. You always 
have the dollar. You break it into 4 parts, 
then figure out what 5 of these parts would 
be. That gives 5 quarters or 125 pennies, 
the amount of the unknown. 

 
 
Fig. F-5. Intervals and Frequency Ratios. 
 

 
 
 

We would like to explain shortly, this 
time in some detail, how to figure out the 
frequencies from the ratios. We intend to do 
this for the entire perfect major scale. 

Recall that the Greek philosopher-
mathematician Pythagoras discovered the 
mathematics behind the consonant 
intervals. This was around 550 BC. 
Pythagoras went on to do work with musical 
scales, which quickly gets complicated due 
to playing in different keys. 

The Greek astronomer Ptolemy around 
150 AD developed a scale with the simplest 
perfect ratios. The scale presents difficulties 

for playing in other keys; however, it is 
excellent if you stick with one key. 

The monk Zarlino introduced this scale 
for Church services in 1558. Table F-3 lists 
the degrees of the scale with perfect ratios 
for each degree. The frequencies are 
compared to the first degree as before. The 
major scale using these frequencies is 
called the just diatonic scale, just scale, or 
just intonation. Since the time of Bach 
(around 1700) we use the equal-tempered 
scale, which will be discussed in a later 
chapter. 

 
Table F-3. Scale Degrees and Frequency Ratios Relative to the First Degree (Just Scale). 
 

 



Copyright © 2012 Prof. Ruiz, UNCA F-11

Table F-4 lists an example of specific 
frequencies that realizes the just diatonic 
scale. We start with 240 Hz so that the 
numbers come out easy. The easiest one to 
determine is the octave or 8th degree, 
which is double. But we want a systematic 
way to calculate these. So we will proceed 
in order. 

The second has a frequency ratio of 9:8. 
The prescription to get the frequency is first 
to establish your reference frequency. We 
did that. It is 240. Now take the second 
number in 9:8, i.e., the 8, and divide 240 

into 8 pieces. You get 30 for each of these. 
We want 9 of these for our tone. So 9 times 
30 is 270 and we are finished. The ratio of 
the second degree to the first degree is 9 to 
8; the second tone has 9 parts (30 per part) 
to the 8 parts of the reference. 

For the next case, 5:4, you divide the 
reference 240 into 4 parts. This gives 60. 
Now we need 5 of these. That is 300. The 
third has 5 parts (60 per part) to the 4 parts 
of the reference. Note that the value of a 
part here is 60, not the same "piece size" 
we considered earlier. 

 
 
Table F-4. Example of Specific Frequencies for the Just Diatonic Scale. 
 

 
 

We now summarize these steps to 
determine frequencies in a compact form. 
For example, to find the frequency with ratio 

5:4 with respect to our reference tone of 
240 Hz, you simply write 5:4 as 5/4 and 
multiply this ratio by 240. 

 

 
 

Use this method to verify all the 
frequencies in Table F-4. Do not use a 
calculator. You do not need a calculator to 
work out the examples in this text. You will 

understand the material better without a 
calculator, acquire confidence in scientific 
calculations, and feel better about yourself 
as a result. 
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Some Questions 
 
 
These topics are discussed in class. 
 
Describe how the 1, 5, and 4 are employed in simple songs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sketch the “Blues Formula.” 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

--- End of Chapter F --- 
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G. Strings 
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In the previous chapter we started with 
the musician's scale and found an 
underlying mathematical simplicity to it. 
Here we will start with physics and see if a 
natural scale arises. You might ask if we 
didn't do this already in the last chapter? 
Didn't we construct a set of tones based on 
simple ratios? 

Almost. We found pleasant 
combinations in the ratios 1:1, 2:1, 3:2, 4:3, 
and 5:4. But what about 6:5, and 7:6? 
These were not in our scale. The ultimate 
say was the historical major scale as a 
given. We were delighted to see such 
mathematical support for the choices that 
went into making this scale. However, the 
choices were made based on historical 
perceptual esthetics. 

Here we are going to discover a set of 
tones that arise naturally. We will let nature 
pick all the tones with no interference on 
our part. Nature has provided us with two 
very simple structures for tone production - 
the string and the pipe. These, along with 
membranes, serve as the basis for the 
construction of our musical instruments. We 
will study the strings in this chapter and the 
pipes in the next. 

Strings are used in many instruments 
such as guitars, violins, the harpsichord, 

piano, and others. We will find that strings 
produce a natural set of tones. You may 
have heard of words like harmonics or 
partials. These refer to such natural tones. 
Some call these tones the harmonic series, 
the harmonics, or the fundamental and the 
overtone series. We might call these groups 
of notes the "physicist's scale" in contrast to 
the "musician's scale" of the previous 
chapter. 

Just as we discovered that the 
musician's scale of meaningful tones has 
mathematical structure, we will find that the 
reverse is true for the mathematical 
"physicist's scale" or harmonic series. It has 
application in music, serving as a basis for 
musical harmonization and orchestration. 
 
Harmonics 
 

Consider the rope in Fig. G-1 below. 
Typical rope waves vibrate so slowly that 
we cannot hear them. However, we can see 
the patterns of vibration. A single rope can 
support a series of vibrations. We can 
measure the frequencies of these. The 
frequency ratios are most important. They 
will provide us with the means to establish a 
new set of tones, the "physicist's scale." 

 
 
Fig. G-1. Rope or Spring of Length L in Equilibrium (No Waves). 
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The simplest periodic wave that a rope 

can support is one that we can start by 
pulling the middle of the rope up and letting 
go. The rope will vibrate up and down. We 
can call this the first mode of vibration for 
the rope. It is also the first mode of vibration 
for a string. See this first case in Fig. G-2. 
Imagine the crest swinging down into a 
trough and then up again. This mode is also 
called the fundamental or first harmonic. 

The next mode can be obtained by 
pulling the first half of the rope up and the 

second half down, and then letting go. You 
will have one crest and one trough (see the 
second case in Fig. G-2). As the rope 
vibrates, the left half will go from crest to 
trough etc. as the right half does the 
opposite. Fig. G-2 illustrates the first four 
modes of vibration for a rope or string. 
These patterns can also be obtained by 
shaking one end of a rope or spring, while 
your friend holds the other end. 

 
Note that the first mode consists of 

one half-wave, while the second consists 
of two half-waves, or one complete 
wavelength. Therefore, the wavelength 
of mode 2, i.e., the second harmonic, is 
shorter. One full wavelength fits between 
the walls for the second harmonic. The 
first harmonic has such a long 
wavelength that just one half the 
wavelength (crest or trough) fits between 
the walls. 

Since the speed of the waves is 
constant and determined by the rope or 
medium properties, we know that if you 
decrease the wavelength, the frequency 
increases. The second harmonic has 
half the wavelength of the first harmonic, 
therefore, the second harmonic has 
twice the frequency. 

It is easy to measure the frequencies 
of rope or spring waves and directly 
verify the above. Can you reason in a 
similar fashion to determine the 
frequencies for the third and fourth 
harmonics? 
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Waves normally want to travel down the 
rope. But the rope waves hit the fixed ends 
tied to the brick walls. The waves reflect 
back and forth constantly. However, for 
some special frequencies the reflecting 
waves interfere to establish the patterns 
such as those in Fig. G-2 (also see Fig. G-3 
below). These special waves are called 
standing waves. The patterns are 
essentially fixed, or "standing." There are 
points along the rope where the rope does 
not move. These points are called nodes. 

They are marked by the letter "N" in Fig. G-
3.  Note that the fixed ends at the walls are 
always nodes. 

There are other points through which 
the rope swings to extremes in its 
movement. These points along the 
horizontal are called antinodes and are 
marked with the letter A. Sketch the fifth 
harmonic underneath the fourth harmonic in 
Fig. G-3 and indicate the nodes and 
antinodes. 

 
 
Fig. G-3. Nodes (N) and Antinodes (A). 
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Look at the second harmonic in Fig. G-
4. One complete wavelength fits nicely 
between the two walls. There is one crest 
and one trough in the snapshot of the 
second wave depicted in Fig. G-4. 
Therefore, the wavelength for the second 

harmonic is L, i.e., λ
2
 = L. Another easy 

harmonic to look at is the fourth harmonic. 
Here two complete wavelengths fit between 

the walls. The wavelength λ
4
 = L/2. 

A fast way to understand all of the 
harmonics is to note that the first harmonic 

has one half-wave, the second has two 
half-waves, the third three and so on. 

The first harmonic has wavelength 2L. 
Don't worry that it never has a complete 
one between the walls. Only the second 
harmonic has a perfect match of one 
wavelength between the walls. Then as you 
squeeze more and more half-waves in, the 
wavelength must get shorter. If you 
squeeze in two, the wavelength shortens to 
1/2 of what it was before. If you squeeze in 
3 instead, the wavelength is 1/3 of the 
original wavelength for the first harmonic. 

 
 
Fig. G-4. Wavelengths of the First Four Harmonics. 
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The Overtone Series 
 

The standing waves for the string or 
rope are the harmonics. We list in Table G-
1 the first eight harmonics. Note that the 
wavelengths are easily determined. As we 
squeeze in more and more half-waves, the 
wavelengths get shorter. 

Compare the 5th harmonic with the 1st. 
The 1st harmonic has one half-wave fitting 
across the entire length of the string. The 
5th harmonic has 5 half-waves in this same 
distance. Therefore, each of these must be 
smaller. In fact, if we can fit 5 in where 
before we had 1, each half-wave must be 
1/5 of what we had for the 1st harmonic. 

Each smaller half-wave for the 5th 
harmonic is L/5. But since this is a half-
wave, we need to multiply by 2 to get a 
complete wave. 

The entry in Table G-1 for the 
wavelength of the 5th harmonic is 2L/5. To 
see this one more way, sketch the 5th 
harmonic. You should have 5 half-waves 
between the fixed ends. Let each half-wave 
be 10 cm. Then your length L is 50 cm. A 
complete wavelength consists of two half-
waves, a crest and a trough. This complete 
wave is then 20 cm, or 2/5 of the length L. 
This is the (2L)/5 found in the table below. 

 
 
Table G-1. The First Eight Harmonics 
 

 
 
 

The frequencies in Table G-1 are 

obtained by recalling our wave relation λ f = 
v. If you halve the wavelength, the 
frequency doubles since the product is a 
constant, the speed. The speed depends 
on the properties of the string such as its 
mass and tension. If your wavelength 
reduces to 1/3 of its original length, the 
frequency triples and so on. So whatever 

the denominator is in the wavelength 
column, that number multiplies our original 
frequency, which we take to be f. 

The first harmonic is also called the 
fundamental. The frequency "f" represents 
the frequency of the fundamental or first 
harmonic. The first few frequencies can 
also be measured directly using a spring. 
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The last column in Table G-1 gives the 
interval jump from the fundamental. Note 
that all the harmonics beyond the 
fundamental have frequencies that keep 
increasing. These are called overtones 
since their tones are higher or over the 
fundamental. The approximate positions of 
these tones in musical  notation is given in 
Fig. G-5, where we have arbitrarily chosen 
the fundamental. The first overtone is the 
second harmonic H2, and it is an octave 
higher. Refer to the previous chapter for a 
review of intervals and frequency ratios. 
There we learned that a frequency ratio of 
2:1 corresponds to an octave. The 
frequency ratio of H2 to H1 is 2 since H2 
has frequency 2f and H1 has frequency f. 

The third harmonic H3 (frequency 3f), 
compared to the second harmonic H2 
(frequency 2f), gives us a frequency ratio of 
3:2. This corresponds to a fifth. Therefore, 
the position of H3 relative to H1 is the 

interval of one octave (to get to H2) plus an 
additional interval of a fifth (to get from H2 
to H3). To see where we are at H4, simply 
note that to get there from H1, we double 
the frequency two times. Double f and you 
get 2f; double again and you get 4f. We 
jump two octaves since every time you 
double the frequency, you go up an octave. 

H5 relative to H4 has a frequency ratio 
of 5:4, which is the interval of a third. H6 
compared to H4 has a ratio 6:4, which is 
also 3:2 by reducing. This is a fifth. So to 
get to H6, jump 2 octaves to get to H4, then 
an additional fifth to get to H6. We cannot 
determine H7 from information in the 
previous chapter. We list it in parentheses 
for this reason and also because this 
interval is very approximate anyway. 
Finally, to get to H8, you double the 
frequency of the fundamental 3 times: f 
to�2f, 2f to 4f, and 4f to 8f. This implies 
three octaves. 

 
Fig. G-5. Fundamental (H1) and the First Seven Overtones. 
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Mersenne's Laws 
 
 Mersenne listed in the early 1600s the 
properties of the string that determine the 
fundamental frequency or pitch. The first 
property is length. The second two 

properties, tension and mass, effect the 
speed of the waves on the string, thereby, 
influencing the fundamental. See Fig. G-6 
below. 

 
 
   Mersenne's First Law states that the longer the string, the lower the frequency or pitch. We 
are accustomed to hearing the deep sounds coming from long strings on a bass. 
 
   Mersenne's Second Law states that the greater the tension in the string, the higher the 
frequency or pitch. When a guitar string is tightened, the pitch is raised. This is how strings are 
tuned. You use your hand to turn the pin that tightens strings on guitars and violins. You need 
to use a tuning instrument for the piano. 
 
   Mersenne's Third Law states that heavier strings result in lower frequencies or pitches. Look 
inside a piano. The strings down in the bass region are much thicker than the strings at the top 
end. You will also see that the strings vary in length. Tension is employed to hold the strings in 
place and give them the correct fundamental frequencies of vibration. 
 
 
When strings are played, the vibration 
mainly consists of the fundamental. 
However, overtones are present in the 

usual complex vibrations. We will learn in a 
future chapter that it's the overtones that 
determine the timbre of a periodic wave. 

 
 
 
Fig. G-6. Mersenne's Three Laws. 
 

 
 
 
 

--- End of Chapter G --- 
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H. Pipes 
 

We proceed now to the study of 
standing waves in pipes. The standing 
waves in the pipe are actually sound 
waves. We cannot see sound waves in air. 
However, we can readily hear the tones. 
The advantage of our earlier 
experimentation with ropes (or springs) is 
that we can see the standing waves. The 
disadvantage is that we cannot hear the 
rope waves. With pipes, we can hear the 
waves but not see them. After studying both 
strings and pipes, you will have an excellent 
understanding of standing waves. 
 
Open Pipes 
 

The first pipes we will consider are open 
at each end. These are called open pipes. 
You can look through them. They are 
cylinders. The air inside vibrates as 
longitudinal standing waves. We can use 
the slinky as a model to help us visualize 
what the air does. We replace the open 
pipe by a slinky. Note that the ends of the 

slinky are free. This corresponds to the 
open ends of the pipe where the air can 
vibrate freely at the ends. If you are worried 
about gravity, imagine the slinky in outer 
space inside the space shuttle. 

Fig. H-1 illustrates a slinky with the 
simplest type of oscillation. The edges of 
the slinky move in and squeeze the center 
region, then move out and stretch the 
middle region. This motion repeats. The 
movement indicated in Fig. H-1 describes 
the fundamental standing-wave pattern for 
a longitudinal wave. Try to think of a simpler 
vibrational mode for the slinky. You will not 
be able to. Fig. H-1 then depicts the 
fundamental for the slinky. We will see 
shortly that one-half wavelength is 
depicted in Fig. H-1. 

The layers of air in an open pipe move 
in a similar fashion. Due to the difficulty in 
sketching and analyzing longitudinal waves, 
we will once again draw analogies with 
transverse waves. 

 
 
Fig. H-1. Simplest Standing Wave on a Slinky. 
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The center of the slinky goes through 

compressions and rarefactions. These are 
fluctuations in pressure. Imagine being the 
slinky ringlet in the center. You get 
squeezed, then stretched. Here, the 
maximum changes take place. We have 
designated the points where the greatest 
changes from equilibrium occur as 
antinodes. 

See Fig. H-2 for the antinode in the 
slinky. The edges of the slinky are never 
stretched or compressed. Therefore, they 
are nodes. The center diagram in Fig. H-2 
represents a pipe, with longitudinal waves 
in air. 
 

 
The air at the center of the pipe goes 

through high and low pressures as 
compressions and rarefactions occupy the 
center. The air at the edges is free to move 

and stay at equilibrium pressure. The air 
layers at the edges never get compressed 
or rarefied. You can remember this by 
observing that the air near the edges is in 
direct contact with the ambient air in the 
room, which air is at equilibrium pressure. 

Similarly, in our example with the rope 
(lowest diagram in Fig. H-2), it is the center 
that experiences extremes. At one time, the 
rope is very high in the center (a crest), 
later it is at the lowest extreme (a trough). 
The ends of the rope remain at equilibrium, 
so the ends are nodes. 

Note the excellent correspondence 
among all three systems in Fig. H-2. We will 
find the similarities between the pipe and 
the string most meaningful. As the string or 
rope wave swings from crest to trough, the 
pipe wave changes in the central region 
from one of compression to rarefaction. 

There is a one-to-one correspondence 
for the node and antinode regions. We will 
be able to use this fact to determine the 
series of standing-wave patterns for the 
open pipe. 

Our plan is to revisit the string and to 
further develop the analogies found in Fig. 
H-2. In this way we will be guided by the 
string. Due to the correspondences 
between strings and open pipes, we expect 
that the open pipe will have the same 
harmonic series as the string. The ends of 
the pipe replace the ends of the string. We 
will copy the node-antinode structure from 
the string vibrations over to the open pipe 
for each harmonic in order to find the nodes 
and antinodes along the pipe. 
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Fig. H-3 below shows the application of 

string oscillations to determine the standing 
waves in an open pipe. The analogy 
indicates that the same harmonics will be 
supported on the open pipe. If the lengths 
of the string and open pipe are the same, 
then the spacing of the nodes and 
antinodes will be the same. Such spacing 
determines the wavelength in each case. 
Therefore, the wavelengths will be the 
same. The frequencies will differ since the 
speeds of the waves are not the same on 
the string and in the pipe. 

But we never committed ourselves to a 
specific fundamental frequency with strings. 
We simply called the fundamental 

frequency "f."  Therefore, everything applies 
here. 

The waves on the string are string 
waves. These transverse string waves 
shake the air surrounding them and 
produce sound waves in air. On the other 
hand, the waves in the pipe are already 
sound waves, waves vibrating in the air 
inside the open pipe. Note that the distance 
between a node and antinode is a quarter-
wave. Recall that for the first harmonic, we 
have one half-wave. See the labeling "N-A-
N" for this case in Fig. H-3. Note that from 
"N" to "A" and from "A" to "N" are quarter-
waves. 

 
 
Fig. H-3. Using the String to Determine the Standing Waves for the Open Pipe. 
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Table H-1 reproduces the first eight 
harmonics since these also apply to open 
pipes. The fundamental for the open pipe is 
determined by the length of the pipe and 
the speed of sound in air, the medium 
supporting the standing waves. Whatever 
this frequency happens to be, we call it "f." 
Then, the second harmonic (or first 
overtone) has frequency 2f, the third 
harmonic (second overtone) has frequency 
3f, and so on. 

The fundamental for the string is 
determined by the length of the string 
(Mersenne's First Law) and the speed of 
the waves on the string. The wave speed 
on the string is in turn dependent on the 

tension in the string (Mersenne's Second 
Law) and the heaviness (mass) of the string 
(Mersenne's Third Law). 

The fundamental for the open pipe is 
determined by the length of the pipe, as has 
been noted above. We can say that the 
speed of sound inside the pipe is likewise 
determined by the medium inside. We 
assume it is air, but it can be some other 
gas. The speed of sound in the gas is in 
turn dependent on medium properties such 
as the temperature, pressure, and the 
density of the gas. However, to some 
extent, these properties are dependent on 
each other. 

 
 

 

Table H-1. The First Eight Harmonics (Standing Waves on Strings and in Open Pipes). 
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Fig. H-4 lists the first eight harmonics 
again. We encountered this figure in our 
study of strings. The significance of 
harmonics is even more profound now that 
we find them generated by open pipes as 

well as strings. The two basic methods of 
producing sound in nature (strings and 
pipes) give us the harmonic series. This set 
of harmonic tones is nature's scale or, what 
we call in this text, the "physicist's scale." 

 
 
Fig. H-4. The First Eight Harmonics (Generated by Strings and Open Pipes). 
 

 
 

A convenient way to demonstrate 
overtones is to use an inexpensive toy, the 
Twirl-a-Tune or Whirl-a-Tune (see Fig. H-
5). The Twirl-A-Tune is a corrugated plastic 
tube with a handle at one end. It produces 
overtones when whirled around. Air rushes 
up the tube when twirled. The rush of air 
against the ridges and valleys of the tube 
excites the tube into vibrating at special 
frequencies - the overtone series for the 
tube. The faster you twirl, the higher the 
overtones you obtain. The toy is too 
excitable to get the fundamental. It readily 
produces the second harmonic or first 
overtone. 
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Up until this point we have considered 
nodes and anitnodes for pipes in terms of 
pressure. A pressure node is a place where 
the pressure remains at the equilibrium 
pressure. A pressure antinode occurs when 
the point goes through periods of increased 
pressure (compressions) and times of 
lowered pressure (rarefactions). 

Note that the ends of an open pipe are 
always pressure nodes since the air is free 
to move and maintain equilibrium. It is 
never allowed to compress. This is 
analogous to the nodes at the ends of a 
string, where the string remains at 
equilibrium. But note an important 
distinction. The rope ends are fixed, not 
allowed to move, while the air layers at the 
ends of an open pipe do move. This 
presents no problem because equilibrium is 
maintained in each case. 

However, we like to define another kind 
of node-antinode for pipes, one that is 
defined in terms of displacement (motion) 
instead of pressure equilibrium. If you think 
in terms of displacement or movement, then 
a node is a place that doesn't move. 

An antinode is a place that undergoes 
the maximum motion. The nodes and 
antinodes on a string are of the 
displacement type. A string node means the 

string doesn't move there. But with pipes, 
both pressure and displacement 
descriptions apply. So we have both kinds 
of nodes. However we must be careful. 

At a pressure node, like at the ends of a 
pipe, the air layers are free to move and 
they do, to maintain equilibrium pressure. 
Because the end layers of air move, these 
regions are displacement antinodes. On the 
other hand, at the places where 
compressions and rarefactions occur, the 
central air layer does not move. Recall the 
slinky ringlet that gets pushed on from both 
sides and then stretched equally from both 
sides. It doesn't move as it gets squeezed 
and stretched. Therefore, this ringlet where 
a pressure antinode occurs, is the place 
where we have a displacement node. 

Remember it this way. A pressure node 
is a displacement antinode and a pressure 
antinode is a displacement node. They are 
opposite of each other. This feature is 
illustrated in Fig. H-6 below. Note the 
shorthand notation for displacement nodes 
and antinodes. A displacement node is a 
vertical line, indicating no motion. The 
dashes indicate motion, displacement 
antinodes. When we draw these near the 
ends, we extend them slightly since motion 
overshoots the edges (think of a slinky). 

 
 
Fig. H-6. Types of Nodes and Antinodes. 
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Fig. H-7 illustrates the first four standing 
waves in an open pipe, where displacement 
nodes and antinodes are employed instead 
of pressure nodes and antinodes. The 
results are opposite the pressure 
description. Wherever there was a node 
before, now there's an antinode and vice 
versa. 

The shorthand notation for displacement 
nodes is included in the diagrams at the 
right in Fig. H-7. There is a quick way to 
remember these. Always sketch a dash "-" 
at each end. You need the number of 
vertical lines "|" that corresponds to the 

harmonic number, e.g., the 4th harmonic 
has 4 vertical lines. Remember you never 
have two nodes in a row; there is always an 
antinode in between. So you alternate 
these. 

The only problem is that it's a little hard 
to space them evenly the first time you try 
it. It helps if you remember one more thing. 
For odd harmonics, there is a vertical line in 
the center; for even, there is a dash in the 
center. The shorthand notation for 
displacement nodes will be very helpful 
when we take up the study of closed pipes 
next. 

 
 
Fig. H-7. The First Four Standing Waves in an Open Pipe Defined by Displacement. 
 

 
 
Closed Pipes 
 
   A closed pipe is a pipe closed at one end. 
See Fig. H-8 below. We see immediately 
that the standing-wave patterns will be 
different. The closed end forces a 

displacement node there, a place where 
there is no motion because "you are up 
against the wall." The other end is open, 
free, a displacement antinode. Sketch a 
little dash at this end. You have the first 
standing wave! 

 
 
Fig. H-8. Closed Pipe. 
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We will use an important observation we 
made earlier concerning quarter-waves. 
The fundamental for the closed pipe is 
compared to that of the open pipe in Fig. H-
9 below. For the open pipe we find one half-
wave fitted to the pipe length L. The half-
wave is spanned by going from an antinode 
to node and then from a node to an 

antinode (see open pipe in Fig. H-9). Going 
from the antinode to node takes you one 
half the distance across the half-wave. 
Therefore, an antinode to a node gives us a 
quarter-wave. Likewise, going from the 
center node to an antinode is also a 
quarter-wave. We state these important 
observations below. 

 
 
  Between a node and antinode is a quarter-wave (quarter of the wavelength). 
 

Between an antinode and node is a quarter-wave (quarter of the wavelength). 
 

Now look at the closed pipe in Fig. H-9. 
We surely have a displacement node at the 
closed end. There is no motion at the wall. 
We also have the usual displacement 
antinode at the open end. But a node is 
always followed by an antinode and vice 
versa. Therefore, the standing wave in Fig. 
H-9 is the simplest standing wave for a 
closed pipe. 

Imagine a slinky with the left end glued 
to a wall and the right end free to move. 
Now pull the right end of the slinky and let 
go. The right end oscillates in and out at the 
right end. The left end stays fixed to the 
wall. You have the slinky version of the 
fundamental for a closed pipe. 

 
 
Fig. H-9. Fundamentals for Open and Closed Pipes (Displacement Nodes). 
 

 
 
  

The single quarter-wave in the closed 
pipe in Fig. H-9 above is twice the length of 
each of the two smaller quarter-waves 
found in the open pipe above it. The 
wavelength of the fundamental for the 
closed pipe is therefore twice as long as the 
fundamental wavelength for the same-size 
open pipe. If we increase the wavelength, 
we lower the frequency. Since the 

wavelength is doubled for the closed pipe, 
the frequency is halved. 

The open-pipe fundamental has twice 
the frequency of the closed-pipe 
fundamental and is therefore an octave 
higher. Alternatively, we can say that the 
fundamental frequency of the closed pipe is 
an octave lower than that for the open pipe. 
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There are two secrets in understanding 
closed-pipe physics. First, if you close one 
end of an open pipe, you double the 
wavelength to 4L (lower the fundamental by 
an octave). Second, as we will see, the 

closed-pipe harmonics only includes the 
odd harmonics! These two important 
characteristics for closed pipes are stated 
below. 

 
 
  1. Close one end of an open pipe and the wavelength doubles to 4L. 
 

2. The harmonic series for closed pipes includes only the odd harmonics. 
 
 

The second observation above 
becomes evident by studying Fig. H-10 
below. For the first mode of vibration we 
have one quarter-wave fitted to L. 
Therefore, the wavelength is 4L. Do not 
worry about realizing an entire wavelength 
within the distance L. This only happens for 
H2 for the string or H2 for the open pipe. 

Mode 1 for the closed pipe has one 
vertical line (at the wall) and one dash (at 
the open end). To get the next mode, we 
squeeze in another pair (the "A" and "N" 
inside the pipe in Fig. H-10). And herein lies 
the second secret. There are now three 

quarter waves. From left to right these are 
"N" to "A," "A" to "N," and "N" to "A." The 
squeezed wavelength is now 1/3 of what it 
was before. The frequency is triple. This is 
the third harmonic. 

We skipped the second harmonic! The 
next mode adds another antinode-node pair 
resulting in 5 quarter-waves. Now, the 
wavelength is 1/5 of what we started with 
and the frequency is 5 times the 
fundamental. This gives us the fifth 
harmonic. We skipped the fourth harmonic. 
Can you work out the next case? 

 
 
Fig. H-10. Standing Waves for Closed Pipe (Odd Harmonics Only). 
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The results for the first few harmonics 
for the closed pipe are found in Table H-2 
below. Note the two basic secrets we 
discussed earlier. This enables us to 
generate Table H-2 from our previous table 
for the strings and open pipes. First, we 
note that when we close one end of an 
open pipe, the wavelength doubles to 4L. 
So we replace 2L (result for open pipe) by 
4L (result for closed pipe) in our table. We 
always list "f" for the fundamental frequency 
by definition. 

The fundamental is our reference 
frequency. So even though the closed pipe 
drops an octave relative to the original open 
pipe, we still use "f" for the fundamental. 
You might say we redefine what is meant 
by "f." This is an important convention. It is 
always most convenient to call the 
frequency of the first standing wave "f" and 
relate all overtones to "f." 

Second, we note that the closed pipe 
only has odd harmonics. So we strike out 
all the even harmonics from our list and we 
are finished. We have Table H-2. 

 
 
Table H-2. The First Few Harmonics for a Closed Pipe. 
 

 
 
 

We can find an open pipe and a closed 
pipe of different sizes so that each has the 
same fundamental. The closed pipe has to 
be one half as long. This offsets the drop in 
frequency we get by closing one end of an 
open pipe. Cutting a pipe in half doubles its 
frequency because we halve the 
wavelength by our cut. This compensates 
for the closed end. In summary, close one 

end of an open pipe and the frequency 
drops an octave. Now cut the closed pipe 
so that the new open end is half as far from 
the closed end. The closed pipe is one half 
its original size. This pushes the 
fundamental back up an octave. Fig, H-11 
depicts the first few harmonics of an open 
pipe and a matched closed pipe. 
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As before, we point out that the notes on 
the musical staff are approximate. The 
scale in use today does not use perfect 
ratios except for the octave. Today's 
frequency assignment for the notes is 

called equal temperament. We will explain 
what this is in a later chapter. We also point 
out that the seventh harmonic is 
considerably approximate. 

 
 
Fig. H-11. Harmonics for Matched Open and Closed Pipes. 
 

 
 

The fundamental in Fig. H-11 is about 
60 Hz. This answer is based on the position 
of the fundamental on the musical staff. We 
will learn later how to determine the length 
of an open pipe necessary to produce a 

specific fundamental frequency. For now, 
we simply state the result. The open pipe 
needs to be almost 3 m. This is long. But 
then, this is a very low pitch. The closed 
pipe needs to be half this length. 
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--- End of Chapter H --- 
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I. Fourier Analysis 
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We have seen in previous chapters two 
sets of notes. These appear in Fig. I-1 
below. The musician's scale represented is 
the major scale. What we call the 
"physicist's scale" comes from the modes of 
vibration on strings and in pipes. 

First, we started with the major scale as 
a given. We then found that the esthetics of 
the scale had some underlying mathe-
matical simplicity in terms of frequency 
ratios. Second, we studied the standing-
patterns in strings and pipes. We 
discovered a very natural grouping of 
frequencies: f, 2f, 3f, 4f, 5f, etc., the 
harmonic series (the "physicist scale" in Fig. 

I-1). Now we will see that this scale of 
nature has esthetic application in music. 

The harmonic series has important 
applications in harmony. The tones of the 
harmonic series blend well together. They 
serve as a guide when a composer wants 
to choose many notes to sound  
harmoniously when played together. Think 
of it this way. Use the musician's scale to 
pick out a melody. Then use the harmonic 
series to assist you in finding a group of 
notes (called a chord) that can be played as 
background to a note or subset of notes in 
your melody line. 

 
 
Fig. I-1. The Scales of the Musician and Physicist. 

 

 
 

A melodic line is written on music paper 
from left to right just like the way we read 
and write. The notes change in time. Refer 
to the musical scale at the left in Fig. I-1. 
The notes appear on the musical staff from 
left to right. On the other hand, 
harmonization occurs at the same point in 
time. Many instruments may participate in 
playing different notes simultaneously. 
These supporting notes are arranged 

vertically underneath the melody note since 
they are played together. The harmonic 
series in Fig. I-1 above is written in this 
vertical fashion. We give an example of 
harmonization from an orchestral excerpt 
from the great master Tchaikovsky in Fig. I-
2. The use of the harmonic series is 
apparent. The excerpt is from the second 
movement of his Fourth Symphony, 
completed in 1878. 
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The excerpt in Fig. I-2 has been stripped 
of any musical markings for loudness. It has 
also been transposed slightly so that the 
fundamental matches that found in Fig. I-1. 
It is important for you to refer to Fig. I-1 and 

check the harmonics listed below. Please 
do this before continuing. The resulting 
sound with so many harmonics is very full 
and satisfying. Note the omission of the 
jazz-sounding seventh harmonic. 

 
 
Fig I-2. Excerpt of Tchaikovsky's Fourth Symphony Transposed for Harmonic Analysis. 
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Complex Waves 
 

Fig. I-3 below illustrates three waves, 
each one getting more complex. The first, 
Fig. I-3a, is a sine wave. This is the 
simplest type of wave. It corresponds to a 
wave of "nature." The standing waves we 
find on strings and in pipe's are sine waves. 
The sine wave is sometimes called a pure 
wave. The sound of a sine wave is 
innocent, simple, pure in tone. 

The second wave, Fig. I-3b, is a 
complex periodic wave. Any periodic 
waveform that is not simple (not a sine 

wave, i.e., non-sinusoidal) is a complex 
periodic wave. These waves have well-
defined frequencies (pitches). Different 
repetitive shapes or waveforms give us the 
rich variety of timbres we hear. 

The third wave, Fig. I-3c, is an aperiodic 
complex wave. Aperiodic complex waves 
do not repeat. These can be crashes, 
explosions, or anything else you can think 
of that cannot hold a steady or definite 
pitch. 
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The most interesting waves for us are 

the periodic waves since these have 
definite pitches. They include the tones of 
most musical instruments and the sounds 
of singers holding a pitch. All of the 
instruments we encounter in the 
Tchaikovsky excerpt are playing tones with 
well-defined frequencies or pitches. These 
instruments consist of three different 
woodwinds, the horns, and the strings. The 
percussive instruments in the orchestra 
have difficulty producing sustained tones. 
The piano gets help from the sustain pedal, 
but technically the sound is aperiodic. It 
dies down immediately after being 
produced. Timpani are drums that give a 
"tuned sound" for an instant. Cymbals are 
crashes. 

There are four main sections in an 
orchestra: the woodwinds, brass, strings, 
and percussion. The first three can produce 
periodic tones. That covers a lot of ground. 
In fact, these sections of the orchestra are 

the ones that play most of the time. Strings 
come first, then woodwinds, and finally 
brass in order of typical use. Percussion is 
employed sparingly in a usual orchestral 
work. 

So our focus on periodic waves is 
justified. And remember, all singers are 
included because they can sing a pitch and 
hold it. Even those of us that can't sing 
usually can hum a note for a few seconds. 
So most instruments, all singers, and the 
rest of us produce tones with different 
timbres. 

Even within the same instrument 
category, timbre varies. The timbre of a 
Stradivarius is different from your common-
variety violin. In fact, the timbre is the 
signature or fingerprint of the instrument. 
However, timbre also varies somewhat for 
different ranges of notes on the same 
instrument! In the next section you will learn 
how to analyze timbre. 

 
 
Fourier's Theorem 
 

While the musician may analyze a 
melodic line in terms of a musical scale, the 
physicist analyzes timbre in terms of 
harmonics (which we have called the 
"physicist's scale"). A mathematical 

physicist, Baron Jean Baptiste Joseph 
Fourier, presented an astounding theorem 
in 1807, which we state below. He found 
that all periodic waves can be constructed 
from sine waves in the harmonic series!

 

 
 

The claim is that you can make any 
periodic wave from its harmonics. This is a 
very profound statement, and one which we 
would like to demonstrate with a specific 
example. We will take a square wave and 

challenge the theorem. How can sine 
waves be combined to get a square? You 
might be skeptical. That's good. You should 
be. It makes for a good scientist. 
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Suppose there was a claim that you 
could make any food from a set of basic 
ingredients. You might call the basic series 
of ingredients the "harmonic series of 
cooking." Fig. I-4 below shows such a 
hypothetical series of ingredients, 
appropriately labeled H1, H2, H3, and so 
on. Only seven are shown below. Imagine 
these in your magic cupboard. You accept 
any challenge of a food to cook. As you go 
to work, you might not have to use every 
ingredient in your collection. You would also 
use specific amounts of those ingredients 
needed. If you wrote out what you used and 
how much of each ingredient, you would 
call this a recipe. It would be the secret for 
cooking the specific meal you were asked 
to cook. 

Similarly, when presented with a 
periodic wave, we can write down which 
ingredients, i.e., harmonics, we use and just 
how much of each. We mix the ingredients 

by simply adding harmonics. We know how 
to add waves; we simply add the 
displacements. So the recipe will tell us 
which harmonics to use and just what 
amplitude to choose for each. We will refer 
to an amplitude of 1 as one cup's worth. 
The various amounts we need of each 
harmonic can be called the Fourier recipe in 
honor of Fourier. 

Actually it's called the Fourier spectrum. 
But there is one more thing a complete 
recipe needs to tell us. This is how to 
position the harmonics before adding them. 
How are they aligned? Are they in phase? 
So we need the phase relationships. But 
the spectrum will only supply the 
amplitudes since these alone essentially 
affect the sound of the tone. This may be 
starting to sound complicated, but it really 
isn't. The best way to convince you of this is 
to work out an example. 

 
 
Fig. I-4. Fourier Synthesis is like Cooking! 
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The square wave we would like to make 

from sine waves is illustrated in Fig. I-5. 
The square wave is a periodic wave but we 
show one wavelength below. We purposely 
choose a difficult waveform, one with 
corners. Fourier's Theorem states that we 
can construct or synthesize this square 
wave from the harmonics that begin with 
the frequency of the periodic square wave. 
Let's call this frequency f. The fundamental 
therefore has the same frequency and thus 
the same wavelength of our square wave. 

The method we employ in building up 
the square wave from the harmonics is 
more artistic that scientific. Physics and 
engineering majors learn mathematical 
methods to find the Fourier spectrum 
(recipe). Does that mean they understand it 
better? No. In fact, you will understand it 
better because you will see the square 
wave take shape as we go, rather than 
become overwhelmed by the obscurity of 
mathematics. The author speaks from 
experience. He finally understood Fourier 
analysis in graduate school when he did it 
the way you are about to see. 

Fourier's Theorem directs us to the 
harmonics that build on the same frequency 
of the square wave we are trying to make. 
Therefore, the first harmonic is the sine 
wave with the same wavelength as our 
square wave. This first harmonic is shown 
in Fig. I-6. Let's use this as a reference for 
our amplitude and say it has amplitude 1. 
We go to our harmonic "cupboard" so to 
speak and use a full cup of our first 
harmonic. 

It resembles our square wave a little. 
Doesn't it? You are probably not impressed 

with Fig. I-6 being a match for Fig. I-5. But 
we only used one harmonic (one 
ingredient). Things will shape up as we 
proceed (to cook). 
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Fig. I-7 shows the shortcomings of our 
first harmonic H1. The square wave is 
included in the background so we can 
compare the two. 

The first part of H1 (left edge) is too low. 
It needs to come up a bit. See the first 
arrow at the left in Fig. I-7. Similarly, the 
crest is too high. The crest needs to come 
down some. Then, the section just to the 
right of the crest needs to be taller. The 
trough needs similar corrections, but in 
reverse directions. 

The vertical arrows in Fig. I-7 indicate all 
the major corrections necessary to improve 
the match with the desired square wave. 
The third harmonic has 3 crests and 3 
troughs in just the right places to make 
these corrections. 

See the upper diagram in Fig. I-8 for a 
sketch showing H1 and H3. We use H3 with 
an amplitude of 1/3. We might say we use 
the ingredient H3 with 1/3 of a cup. Note 
that we skip over ingredient H2. 
Remember, we do not have to use all the 
harmonics or ingredients for a specific 
recipe. 

The result of adding H1 at full amplitude 
and H3 at an amplitude of 1/3 is given in 
the lower diagram of Fig. I-8. You might ask 
why an amplitude of 1/3 for H3. The recipe 
calls for 1/3 by trial and error. Actually, a 
mathematical procedure can be used to 
arrive at the precise value of 1/3. 
 
   Nevertheless, our sketch indicates that 
1/3 is a good value for the amplitude of H3. 
Don't try to add the waves precisely; strive 
instead for a qualitative understanding of 
the addition. Note that H3 interferes 
constructively at its first crest. This shores 
up the left end a bit. Then note that the first 
trough of H3 interferes destructively with 
the crest of H1. It pulls the crest down. 
Study the effects of the addition on the 
other sections. 
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We mark with vertical arrows the further 
corrections we need to make for our wave 
to look even more like a square wave. See 
the upper diagram in Fig. I-9. We find that 

we need 10 corrections, 5 up and 5 down. 
Note that they alternate. The fifth harmonic 
H5 has 5 cycles of crests and troughs. This 
harmonic is sketched in the upper diagram 
with an amplitude of 1/5. The corrections 
need to be gentle so we use this smaller 
amplitude for H5. Note that the 4th 
harmonic is skipped over for synthesizing a 
square wave. 

The result after adding the 5th harmonic 
to the sum of the fundamental and 3rd 
harmonic is given in the lower diagram in 
Fig. I-9. We are closer now in our 
approximation to the square wave. Observe 
that H1 alone has a single crest. The sum 
of H1 and H3 gives a "two-bump" crest and 
the sum of H1, H3, and H5 gives a "three-
bump" crest. Notice also that the trough has 
these three small bumps but reversed. See 
if you can sketch the waveform resulting 
from adding in H7. This harmonic is used 
with an amplitude of 1/7. You should have 4 
bumps in the first half of the wave. Fig. I-10 
shows the result when H7 and H9 are 
included. The result has 5 bumps in the 
crest region. Note that we added 5 odd 
harmonics and have 5 bumps. The 
amplitude used for H9 is 1/9. 

The sum wave begins to look more and 
more like a square wave. The prescription 
calls for using the odd harmonics, i.e., sine 
waves with frequencies f, 3f, 5f, 7f, 9f, and 
so on. The specific amounts to add 
(amplitudes) are 1, 1/3, 1/5, 1/7, 1/9, and so 
on respectively. As many more harmonics 
are added, the wrinkles get ironed out. The 
overshoot at the edges were discovered by 
Gibbs. They do not get ironed out; however 
each "rabbit ear" is squeezed shut as an 
infinite number of sine waves are added. 
The result is a perfect acoustical match.
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We successfully constructed a square 

wave from the harmonic series. This is 
called Fourier synthesis. Fourier analysis is 
the breaking down of a periodic wave into 
its harmonics. Since any tone held by a 
singer or musical instrument is a periodic 
tone, it can be Fourier analyzed, usually by 
scientific instrumentation. The harmonics 
above the fundamental are referred to as 
overtones, as discussed earlier.  Each 
harmonic is also called a partial (part of the 
complete tone). 

The simple waveforms introduced 
earlier can be analyzed by theoretical 

methods of mathematical physics. The 
results for these simple geometrical 
waveforms are given in Table I-1 below 
(first nine harmonics). The partial-wave 
components (partials) are not always lined 
up with the fundamental for adding as in the 
case of the square wave. They need to be 
shifted left or right by various degrees, 
whatever the recipe calls for. The amount 
shifted is given by the phase. However, 
these are not listed since the more 
important ingredient in hearing is the 
amplitude information. 

 
 
Table I-1. Five Periodic Waveforms and Their First 9 Fourier Amplitudes. 
 

 
 
Fourier Spectra 
 

The results of Fourier analysis are most 
conveniently expressed in a bar graph. The 
plot of the relative amplitudes is often 
referred to as the Fourier spectrum for the 
periodic wave. The Fourier spectra for the 

five waveforms in Table I-1 are given in Fig. 
I-11. Note that the Fourier spectrum for the 
sine wave is just one harmonic, the 
fundamental or sine wave itself. 
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Fig. I-11. The Data in Table I-1 Expressed in Graphical Form. 
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Some Questions 
 
 
 

Fill in the circles below for the correct answers. 
 

 
 
 
 

Check the appropriate boxes below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

--- End of Chapter I --- 
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J. The Moogerfooger 
 
 
 
 

The Physics of Sound and Music, Auditorium in Robinson Hall 
 

 
 

October 24, 2002, Photo by former Office Assistant Ruth Maconi 
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 In this chapter we will discuss some 
general descriptions of sound that are 
relevant for room acoustics. This material 
will build on our earlier studies of sound, 
mainly reflection. Then we will return to the 
Fourier spectrum, which we have just 
covered. We will see that some sounds 
such as bells and gongs include 
frequencies that are not part of the 
harmonic series. These sounds are not truly 
periodic so the harmonic series is not 
enough to describe them. Such a sound 
with additional frequency components in its 
spectrum is call an inharmonic sound, one 
not fully described by its harmonics. These 
sounds fall under the topic called 
inharmonicity. 
 
Reverb 
 

Reflection is one of the basic properties 
of waves. When sound waves reflect, we 
hear echoes. This is a very important 
property of sound in closed rooms and 
halls. The various reflections we hear 
define the acoustics of the room. A room 
excessive in echoes is not desirable. 
Enclosures such as basements and 
dungeons come to mind. Too little reflection 
gives a dry sound like we are out in an 
open field. 

The speed of sound is 340 m/s = 1100 
ft/s. Let's round this off generously to 300 
m/s = 1000 ft/s. Sound travels 1 ft in one-
thousandth of a second, i.e., 1 ms. It travels 
3 ft, which is roughly 1 m, in 3 ms. 
Someone sitting a couple of meters away 
from you will hear your voice about 6 ms 
later. We can take this to be 5 ms since we 
are estimating. The sound waves leaving 
you also travel to and reflect off the walls, 
floor, and ceiling. If you have a rug, the 

reflections from the floor will be decreased 
significantly. 

Sound hitting a wall nearly a couple of 
meters away, and reflecting to travel a 
similar additional distance to reach the 
hearer may get there 5 ms too late. Sound 
hitting the ceiling which is farther away than 
the nearby wall may arrive 10 ms too late. 
Sound going across the room to the far wall 
may reach the hearer 15 ms too late. All of 
the reflected sounds are softer of course. 
They arrive at the hearer within 20 ms. This 
makes the room intimate. If the first 
reflected sounds at a small concert hall 
start coming in to the observer before 20 
ms, even though the reflections will 
continue, the concert hall is judged to be 
intimate, though not as intimate as an 
office. 

We have learned to expect reflected 
sounds in rooms and halls. We also get 
reflections of reflected sound. This can go 
on for some time, especially in a dungeon. 
Such persistent reflected sound is called 
reverberation or reverb. A strict definition 
for reverberation or reverberation time is 
the time it takes for the reflections to die 
down to one millionth of the initial intensity 
heard by the observer. You might think this 
is too much to ask for. But our ears are not 
impressed unless great changes in sound 
occur. This is necessary if you want to be 
able to hear a whisper and later a band 
playing (with the same detector, your ear). 
Dropping a millionth in intensity is like going 
from a full blaring orchestra to soft 
background music or from a forceful voice 
to a whisper. We will see later that our ears 
are capable of hearing a change in intensity 
of more than one trillionth (i.e., a millionth of 
a millionth)! 
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To hear some reverb, cup your hands 
together and speak into them. Although 
reverberation time is typically too short for 
us to measure easily, we know when we 
hear it. You can hear the difference 
between talking into your hands and talking 
out in the open. You can imagine the 
sounds in caves, basements, and 
dungeons. These latter sounds have much 
reverberation. 

There is a toy called the Zube Tube 
which has a spring about a meter in length 
inside a tube about the same length. As you 
talk into it, the sound waves excite the 
spring. The combination of an excited 
spring and a cylindrical cavity provides for 
reverberation. Springs also work in 
electronic circuits. Sending music in 
electronic form through a spring causes 
reverb. Reverb circuits have been designed 
to enhance the reverberation of the music 
we hear. You might have a reverb control 
on your stereo. The circuit introduces 
reflections electronically and the sound that 
comes out has more reverb in it. Your 
music sounds much better than it would if 
you depended solely on the natural reverb 
of your room. 
 
Room Acoustics 
 

Room acoustics is very complicated. 
The experience of sound in a room 
depends on so many things. The central 
feature to consider is reverb of course. 
However, reflections are dependent on 
where you are in the room, the distance you 

are from the source, the things in the room, 
the materials of the walls, etc. Certain 
materials absorb sound better than others. 
Special tiles are placed in practice rooms in 
UNCA's Department of Music to limit sound. 
These tiles absorb sound so that others in 
neighboring rooms and the outside halls will 
not be disturbed as much. Curtains and 
rugs also absorb sound relatively well. The 
smoothness of the walls is important. The 
shape of the room needs to be considered. 
Remember the dramatic effects in the 
whispering chamber. The height of the 
ceiling is crucial. The seats and the people 
also affect the outcome. 

Much goes into the design of 
auditoriums as you can imagine. Since 
such planning is so complex, it is really an 
art, with design parameters evolving 
throughout the years. The reverberation 
time gives us a compact way to assess the 
acoustics of an enclosure. Since some 
frequencies may reflect better than others, 
reverb is often reported at specific 
frequencies such as 125 Hz (low range, 
bass), 500 Hz (midrange), and 2000 Hz 
(high range). We are fortunate that all 
frequencies travel at the same speed. 
Remember that the speed of sound 
depends on the medium. Otherwise, we 
would be in lots of trouble. Some sounds 
would then arrive out of sync with their 
supporting sounds. 

Two basic descriptions of room 
acoustics are intimacy and liveness. We 
have touched on these already. They are 
defined below. 

 
 

Intimacy -  presence of reflections reaching hearer within 20 ms after the direct sound. 
 

Liveness -  presence of sufficient reverb. 
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Remember when we discussed the 
small room, reflections start arriving at the 
hearer 5 ms after the direct sound, surely 
less than 20 ms. We say the room is 
intimate acoustically, regardless of the 
conversation you are having. However, 
small rooms tend to be used for actually 
"intimate" conversations for this very 
reason. 

Now let's go to a larger room like a 
school auditorium such as the one in 
Lipinsky Hall on campus. Does the hall 
satisfy the acoustic definition for intimacy? 
It doesn't have to excel in intimacy like an 
office, but reflections need to get to us 
around the 20 ms limit. Remember that 
sound travels 1 ft (1/3 meter) in 1 ms 
(millisecond or thousandth of a second). 

Suppose we are in the back somewhere 
100 ft from the performers. The direct 
sound gets to us in 100 ms (1 millisecond 
for every foot to travel). This is one-tenth of 
a second. The reflections better start 
arriving 20 ms after this. This means that 
some of the sound going in other directions 
better find something to reflect from so that 
the total distance of the longer path is 
around 20 ft. The indirect sound waves 
hitting a wall or the ceiling will travel too far 
(beyond the allowed 20 ft) by the time it 
reaches us (in the back) and thereby fail to 

meet the criterion for intimacy. We have to 
sit up front for the intimate experience. 

On the other hand, the science 
auditorium has smaller dimensions than the 
auditorium in Lipinsky. The science 
auditorium has 180 seats, while the 
Lipinsky auditorium has about 600. The 
distance from the front to the back of the 
science auditorium is only about 40 ft. The 
sound gets to someone three-fourths of the 
way toward the back in about 30 ms. Other 
indirect sound waves have no trouble 
reflecting off the nearby walls or ceiling, 
taking paths less than an additional 20 feet. 
So we easily get reflections within 20 ms. 
We consider the auditorium "acoustically" 
intimate, although not as intimate as a 
smaller classroom. 

Other acoustical descriptive words 
include fullness, clarity, warmth, and 
brilliance. Refer to Table J-1 below. If there 
is little reverb, we have clarity. This is good 
for playing Bach. The crisp, clear music of 
the baroque period (1600-1750) sounds 
best in rooms where the reverb times are 
less than 1.5 s. Good reverb times for 
music of the classic period (1750-1800) are 
in the range 1.6 to 1.8 s. Reverb times 
between 1.9 and 2.1 s are best for the full 
satisfying sounds of the romantic period 
(1800-1900). 

 
 
Table J-1. Acoustical Descriptions for Different Amounts and Types of Reverb. 
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For much reverb at low frequencies, the 
rich bass sounds envelop us with musical 
warmth. Such reverb can enhance the 
mellow sound of a cello playing in a small 
ensemble. Reverb at higher frequencies, 
i.e., brilliance, emphasizes instruments that 
play higher pitches (like flutes and 
piccolos). The word brilliance, like the 
others, is subjective. We use words by 
convention in order to help us describe 
room acoustics in some standardized way. 
In all, there are nearly 20 such terms. Two 
others are ensemble (ability of performers 
to hear each other) and blend (a 
satisfactory mixing of sound for the entire 
audience). 

Reverberation data for four concert halls 
can be found in Table J-2. The 
reverberation time is given at three 
frequencies: 125 Hz (low range, bass), 500 
Hz (midrange), and 2000 Hz (high range). 
The time is given in seconds. Note the 
shorter reverb times for Philadelphia's 
Academy of Music when compared to 
Boston's Symphony Hall. The great Leopold 
Stokowski (conductor of the Philadelphia 

Orchestra from 1912-1938) developed a 
masterful sustaining technique to counter 
the short reverberation times at the 
Academy of Music. On the other hand, 
Maestro Serge Koussevitzky of the Boston 
Symphony utilized an abrupt technique to 
compensate for the longer reverberation 
times at Symphony Hall. Their respective 
conducting techniques did not serve them 
well on visiting appearances due to the 
different characteristics of the halls. So they 
stopped the visits. 

Stokowski conducted the music for the 
famous Walt Disney film Fantasia (1940). 
Under the direction of Stokowski and later 
Eugene Ormandy, the Philadelphia 
Orchestra became one of the world's finest 
orchestras. Eugene Ormandy was known 
for his interpretation of romantic music such 
as that of Rachmaninoff. There are old 
recordings of Eugene Ormandy conducting 
with Rachmaninoff at the piano, performing 
Rachmaninoff piano concertos. Ormandy 
was the conductor of the Philadelphia 
Orchestra from 1938 to 1980. 

 
 
Table J-2. Acoustical Characteristics of Four Concert Halls (When Occupied). 
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Inharmonicity 
 

Inharmonicity refers to frequency 
components of a wave that do not fit into 
the harmonic series. For example, a 100-Hz 
ramp wave has Fourier spectral 
components such as 200 Hz, 300 Hz, 400 
Hz, and 500 Hz. These are overtones and 
members of the harmonic family beginning 
with the fundamental 100-Hz sine wave. 
Imagine this ramp wave, but now with 
additional frequency components 171 Hz 
and 239 Hz. The wave is no longer a ramp. 
These frequencies are not in the harmonic 
series that starts with 100 Hz. These 
strange inharmonic additions are also 
called inharmonic partials. The overall 

sound is no longer periodic. If you keep the 
sound going electronically, the lack of 
periodicity is experienced as a lack of a 
well-defined pitch. 

We will use a balanced modulator, also 
called a ring modulator, to illustrate 
inharmonicity. The balanced modulator 
accepts two waves and sends out two 
modified waves. The modification is 
understood best by considering input sine 
waves. When a balanced modulator 
accepts two pure (sine) input tones, it 
sends out the sum and difference tones. 
This is illustrated in Fig. J-1a below. 

 
 

 
 

A specific example with numbers is 
given in Fig. J-1b. The input frequencies 
are 400 Hz and 90 Hz. The output 
frequencies are the sum (400 + 90 = 490 
Hz) and difference (400 ��90 = 310 Hz). 
It's important to note that all of these tones 
are sine waves. The rule applies to sine 

waves. If you send in one wave which is not 
a sine wave, then you must decompose it 
first into sine waves using Fourier analysis. 
Each harmonic is then added and 
subtracted with the other input sine wave. 
Our next example presents such a case.
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Let's balance modulate a 600-Hz sine 
wave with a 50-Hz square wave. We need 
to think in terms of sine waves so we break 
the square wave into its harmonic 
spectrum. The square wave consists of odd 
harmonics, so we have f, 3f, 5f, and so on.  
Since f = 50 Hz, the first harmonic is 50 Hz. 
The third harmonic is three times this, 
which gives 150 Hz. The fifth harmonic is 
250 Hz. Note that the amplitudes of the 
higher harmonics get smaller. In 
synthesizing a square wave (last chapter), 
we used an amplitude of 1/3 for the third 
harmonic and an amplitude of 1/5 for the 
fifth harmonic. Since these amplitudes get 
even smaller and smaller for the higher 
harmonics beyond the fifth, we can 
approximate the square wave stopping at 
H5. 

The Fourier sine components for the 
square wave are listed below in Table J-3. 
Note that only the first few harmonics of the 
square are represented since the higher 
harmonics contribute even less to the 
sound. The even harmonics are missing for 
a square wave. Each harmonic of the 
square wave must be treated separately 
with the other input, the sine wave. The 
sum and difference for each harmonic is 
given in Table J-3. The results are given in 
Fig. J-2. The relative amplitudes of the 
original square-wave harmonics are 
preserved. The frequencies in the spectrum 
do not form part of a harmonic series.  In 
fact, there is no fundamental. The spectrum 
is inharmonic. 

 
 
Table J-3. Balanced Modulation of a 600-Hz Sine Wave and a 50-Hz Square Wave. 
 

 
 
Fig. J-2. Spectrum of Inharmonic Output from Above Table. 
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Fig. J-3a illustrates the input sine waves 
for the problem we just considered. The 
spectrum for the square wave and the sine 
appear together. The spectral components 
are the dotted vertical lines. Fig. J-3b 
shows the resulting output after balanced 

modulation. The frequency of each 
harmonic for the square wave (Wave 1) is 
added and subtracted from 600 Hz, the 
frequency of the sine-input wave (Wave 2). 
The spectral components (inharmonic) are 
the solid vertical lines. 

 
Fig. J-3a. Input Waves into Balanced Modulator. 
 

 
 
Fig. J-3b. Balanced-Modulated Output Spectrum for Above Input Waves. 
 

 
 



Copyright © 2012 Prof. Ruiz, UNCA J-9 

Finally we combine all the steps into one 
diagram, Fig. J-4 below. The input spectra 
are dotted, while the output spectrum is 
solid. Note the mirror-reflection symmetry 
about the 600-Hz sine wave. The group of 
frequency components to the right of the 
600-Hz sine wave is called the upper 
sideband. The group of frequencies below 
the 600-Hz sine wave is called the lower 
sideband. 

The output spectrum does not consist of 
a fundamental and its associated overtones 
as we find for periodic waves. In fact, as we 
noted, there is no fundamental. The 

spectral components 350, 450, 550, 650, 
750, and 850 Hz do not exhibit the 
characteristic relationships of the harmonic 
series, i.e., f, 2f, 3f, 4f, etc. The balance-
modulated sound is inharmonic. Any sound 
that is not periodic is technically 
inharmonic. However it is interesting to note 
sounds that are nearly periodic. Such 
examples of inharmonic sounds include 
bells, chimes, and gongs. The 
Moogerfooger 102 is built on principles of 
blalanced modulation. See your Power 
Notes for more on the Moogerfooger. 

 
 
Fig. J-4. Balanced Modulation (50-Hz Square Wave and 600-Hz Sine Wave). 
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Some Questions 
 
 
 

 
 
 

A 1050-Hz sine wave is balanced 
modulated with a 50-Hz ramp wave. Give 
the difference and sum frequencies for 
each Fourier component of the ramp wave 
balanced modulated with the sine wave. 
Enter amplitudes as fractions such as 1/2 

when appropriate. Do NOT use decimals. 
Make sure you give the difference and sum 
frequency even though the amplitude may 
be zero. The zero amplitude means that 
these components will not be present in the 
output wave. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

--- End of Chapter J --- 
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K. The Laws of E&M 
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There are three basic stages of sound 
reproduction. These are illustrated in Fig. K-
1. Dividing the challenging task of sound 
reproduction into modular steps is good 
engineering practice. We have division of 
labor and specialization of function. There 
is no duplication of jobs. Also, the source 
can then be interchanged. It might be a CD 
player, tape deck, or microphone. 

The signal from any of these sources 
needs to be enhanced in order to drive a 
speaker membrane. This is accomplished 
in the second stage by the amplifier. In the 

third stage we find the speaker so we can 
hear the sound. A single speaker gives 
monophonic or monaural sound. 

Two speakers, each with a somewhat 
different channel of sound information, 
provide for a three-dimensional experience 
of sound. This is stereophonic or stereo, 
which we are very accustomed to. A set of 
four speakers, each with a separate 
channel, is called a quadraphonic system. 
Most people are pleased enough with 
stereo and often settle for stereo systems. 

 
 
Fig. K-1. The Three Basic Stages of Sound Reproduction. 
 
 

 
 
 

Since the time of hi-fi (high-fidelity), 
when sound reproduction became quite 
realistic, but still monophonic, serious music 
lovers have taken pride in carefully picking 
out components for their sound systems. 
They might buy the best record player (e.g., 
in the 1950s) built by one manufacturer, the 
amplifier built by another, and speakers 
from still another. 

In the late 1950s, as stereo became 
accessible to the masses, thousands of 
monophonic records had to be replaced by 
the new stereo records. The standard setup 
was a turntable, amplifier, and two 
speakers. A tuner to pick up the new stereo 
radio stations was also essential. The older 
reel-to-reel tape recorder was handy for 
making good stereo tapes off the air. This 
would mean three source units: the 
turntable, tuner, and tape recorder. No one 
serious would dare buy a record changer 

that stacked records and dropped one 
automatically on top of the last one when 
playing the next record. The turntable, 
which can only handle one record, offered 
the best protection for your fine records like 
the Angel recordings of the Schumann four 
symphonies. You would want a good 
amplifier, capable of at least 35 watts per 
channel and two fine speakers. Each 
speaker unit would contain a large speaker 
for long-wavelength low frequencies and a 
smaller one for the higher pitches. Those 
with systems including 15-inch bass 
speakers would look down on those with 
12-inch speakers. If you had 8-inch 
speakers, you were pretty far down the list. 
The wattage per channel was also a 
measure of status. One of the author's 
friends in graduate school had a 200-watt 
system in a small apartment during the 
1970s. 
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We need to understand basic concepts 
in electricity in order to understand the 
20th-century developments in sound 
reproduction. Electricity involves using a 
fundamental force of nature, the electric 
force, to our advantage. Let's look at basic 
forces in nature before pursuing our study 
of the electric force in some detail. 
Physicists have found very few fundamental 
forces in nature. You might say that these 
basic forces are responsible for holding the 
world together. Physicists have been 
amazed to discover that forces once 
thought to be different and separate, were 
found to be related in an intrinsic way. 

For example, the forces that govern 
heavenly motion were once thought to be 
different from earthly forces. Kepler (early 
1600s) discovered laws describing the 
celestial orbits of planets while Galileo, 
around the same time, found what 
appeared to be a different law describing 
terrestrial motion. Newton showed that the 
(celestial) force that keeps the moon in orbit 

around the Earth is the same (terrestrial) 
force that causes apples to fall to the 
ground. He called this the force of universal 
gravitation. Newton published this in his 
famous work, the Principia, in 1687. 

Other forces under investigation, mainly 
in the 1700s and 1800s, were electric 
forces and magnetic forces. These were 
likewise shown to be manifestations of a 
single force (c. 1865), now called the 
electromagnetic force. The early historical 
development of discovering the unifying 
forces in nature is summarized in Fig. K-2. 
Einstein was so impressed by nature's unity 
of forces that he set out to search for the 
one force that unified all, the unified field 
theory. He failed to discover this. Also, 
there are two nuclear forces that need to be 
dealt with. There has been considerable 
success in unifying all the basic forces in 
nature except gravitation since 1967. Work 
is in progress now to unify all. String theory 
might be the answer. Of course, there is a 
chance that unification is impossible. 

 
 
Fig. K-2. Unification of Basic Non-Nuclear Forces in Nature. 
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Engineering applications of gravitation 
and mechanical systems were made 
centuries before Newton presented his 
elegant mathematical laws in 1687. The 
associated inventions include the pulley, 
lever, and wheel-axle assembly. However, 
with the electromagnetic force, the 
engineering applications came after the 
theoretical laws were laid down. Mechanical 
systems can be seen and touched. We can 
handle levers and pulleys. We can 
experiment directly with our hands. But 
electricity is more subtle. 

After the laws of electricity and 
magnetism were written down in 1865, the 
stage was set for inventors and engineers 
to develop an arena of new technological 
devices. A new source of power was 
unleashed, electrical power. Electrical 
engineering became a specialized 
profession. Electronics became an area of 
applied science. These developments 
made possible the science of sound 
reproduction. The laws of electricity and 
magnetism are essential for sound 
reproduction. Electronic circuits are joined 
with mechanical components to make 
microphones, tape decks, speakers, and 
other sound devices. At this point, we would 
like to learn more about this new duet of 
basic forces, the electric and magnetic 
forces, that makes all of this possible. 

The electric force can produce 
electricity, the flow of charged particles. 
Charge is similar to mass in the sense that 

it is related to a fundamental force in 
nature. Mass is the source for gravity (or 
gravitation) and mass also responds to 
gravity. For example, the large mass of the 
Earth produces gravity near the surface of 
the Earth, and other masses, like rocks and 
baseballs, respond to this "force field" of 
gravity. The Earth and a baseball attract. 
We see the baseball move and not the 
Earth, because the baseball is light and the 
Earth is so huge. 

Another fundamental force in nature 
besides gravitation, is the electric force. 
Charges create electric "force fields" and 
other charges respond to these fields. Once 
again, the lighter masses do more of the 
moving around. The electric force can be 
attractive or repulsive. There are two types 
of charges, designated as "+" and "�," 
making this possible. Two like charges, 
e.g., two plus or two minus charges, repel 
while unlike (a plus and a minus) attract. 

The building blocks of matter are 
molecules and atoms. However, atoms are 
made up of a nucleus containing two types 
of particles (protons and neutrons) and a 
cloud of surrounding electrons. The 
elementary building blocks of matter are 
therefore the protons, neutrons, and 
electrons. These give us the key to 
understanding where charges come from. 
Table K-1 below lists these three 
elementary particles. The unit "amu" stands 
for atomic mass unit, a very small unit of 
mass. 

 
 
Table K-1. Elementary Building Blocks of Matter. 
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In Table K-1 one unit of charge is taken 
to be the amount of charge on a proton. 
The masses of the proton and the neutron 
are about the same in value; however, both 
are much more massive than the electron 
(1836 electrons have about the same mass 
as 1 proton). The charges that move as 
electricity in wires are electrons. Electrons 
surround the nucleus in an atom. The 
number of electrons (minus charge) for any 
neutral atom is equal to the number of 
protons (positive charge) in the atom. The 
details of electron orbital motion and 
interaction with neighboring atoms are the 
subject of chemistry. In a metal wire, atoms 
are bound together forming a metallic solid. 
However, the outer electrons of the atoms 
are free to move around from one atom to 
another. This motion makes possible the 
production of electricity. 

Electricity can be very dangerous. One 
should never play with electrical outlets at 
home. Electricity consists of small moving 
particles as we have seen. A current of 
these charges traveling in wires is the 
standard type of electricity. However, there 
is another kind of electricity called static 
electricity. There is no motion in this case 
(except for when sparks fly). To illustrate 
static electricity, rub a balloon against your 
arm and try to get it to stick on a wall (see 
Fig. K-3). The author stuck 100 balloons on 
walls in his second daughter's bedroom for 
her 4th birthday in 1990. Many of them 
stayed attached to the wall overnight. Rub a 
comb or ballpoint pen (plastic) against your 
sweater. Can you then pick up little bits of 
paper with the comb or pen? This is an 
example of the electric force at work. 

Prepare two balloons by tying a string to 
each. Can you get the balloons to repel 
each other after rubbing them on your arm 
(see Fig. K-4). The balloons are said to be 
charged with static electricity. Each balloon 
picks up electrons (negative charges) when 
rubbed against your arm. Like charges 

repel each other. So the balloons repel 
each other because they have gained 
electrons. Ben Franklin called these 
charges negative, in the 1700s, before 
anyone knew that the charges were 
electrons. The electron was not discovered 
until 1897. Ben Franklin's choice forced 
scientists later to call the protons (with 
opposite charge) positive. 

Normally, an object such as a balloon 
has just as many electrons as protons. The 
balloon is neutral. When you rub an object 
against another, sometimes electrons are 
transferred; the protons stay where they 
are. Two balloons with extra electrons repel 
since "likes" repel ("unlikes" attract). 
Rubbing silk with glass removes electrons 
from glass. Rubbing cat's fur with plastic 
removes electrons from the cat. 
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When you rub a balloon or comb against 
your hair, the balloon or comb picks up 
electrons, as we have noted. The negative 
charge on the balloon chases away 
electrons in the wall. These wall electrons 
are repelled by the electrons on the balloon. 
They move away from the edge of the wall 
(see Fig. K-5 at the right). The absence of 
electrons at the wall leaves the surface with 
a positive charge. The balloon's electrons 
are attracted to this positive charge and the 
balloon sticks to the wall. The electrons 
can't easily leave the balloon so the balloon 
stays stuck to the wall. If it is humid, the 
electrons can leave the balloon for the 
moist water droplets. The balloon then 
won't stay on the wall very long. The 
positive charge at the wall is induced by the 
balloon. This is called electrical induction. 
This also explains why a comb picks up bits 
of paper after you rub it on your sweater. 

We can now consider magnetic forces 
by an analogy to electric force. Magnets 
attract and repel other magnets depending 
on the orientation of the ends of the 
magnets. We call one end north and one 
south, analogous to positive and negative. 
We find that "likes" repel. Two north poles 
won't pull together. They push each other 
away. Similarly two south poles repel. 
However, a north pole and south pole 
attract. See Fig. K-6 below. We have a 
similar rule here as the one we encountered 
in the electric case: "likes" repel and 
"unlikes" attract. 

There is an important difference though. 
No one has ever found a magnet with one 

pole. All magnets have north and south 
poles. This is unlike charges, where we can 
find a sole plus charge such as the proton 
and a sole negative charge such as the 
electron. 

 

 
Our next experiment will shed some 

light on why magnets have two poles. It will 
also show us that electricity and magnetism 
are related. However, some scientists still 
search for a magnet with one pole, a 
monopole. So far none have been 
discovered. This fact has become one of 
the laws of electricity and magnetism: 
magnetic monopoles do not exist! So if 
someone discovers one, that person will 
probably win a Nobel prize in physics. 

 
 
Fig. K-6. Magnetic Attraction and Repulsion. 
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Speakers 
 

Our next experiment will show us the 
connection between electricity and 
magnetism, give us insight why magnets 
have two poles, and provide the 
groundwork for understanding speaker 
systems. 

If materials are available, take an iron 
nail and wrap thin insulated wire around it 
many times. Then connect each end of the 
wire to the ends of a battery, being careful 
not to touch the bare-wire ends or battery 
terminals. The wire and nail can get quite 
hot. If the insulated wire gets too warm, 
stop. Wrap more windings. Try to pick up a 
paper clip. The nail now acts like a magnet. 
See Fig. K-7 at the right. You have an 
electromagnet. You may find that a residual 
magnet remains after disconnecting the 
battery. 

Our experiment shows that we can 
make a magnet using electricity. This 
suggests a unifying relationship between 
electricity and magnetism. It explains why 
scientists consider electric and magnetic 
forces as one fundamental (electro-
magnetic) force rather than two. Now reflect 
on Einstein's struggle to look deeper into 
nature and find a similar relationship 
between gravitation and electromagnetism. 
If you don't see a connection, don't feel bad 

- neither did Einstein. And he studied the 
problem for the last 30 years of his life 
before he died in 1955. 

 

 
 

Now comes the real magic. We remove 
the nail and find that a compass responds 
in the vicinity of the ends of the wrapped 
wire. A force field exists although there is 
no magnet per se. We call this force field a 
magnetic field. We find that we can make a 
"ghost magnet" of the polarity of our choice 
by the way we attach the battery. See Fig. 
K-8 below. 
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In Fig. K-9 we perform a slight variation 
of our previous experiment. We fix the 
magnet by cementing the south pole into a 
wall. Now when the magnet is attracted to 
the "ghost magnet," it can't go toward it. So 

the coil comes to the magnet. The "ghost 
magnet" is free to move because the wires 
are not sturdy. When the battery polarity is 
reversed, the "ghost magnet" is repelled 
and moves away from the fixed magnet. 

 

 
 
 

Newton discovered that for every action 
there is a reaction. When a force is applied, 
we can consider this the action, e.g., the 
"ghost magnet" pulls on the magnet. Then 
immediately there is a reaction force, the 
magnet pulls on the "ghost magnet." They 
both want to move. It's like the sun and 
Earth pulling on each other due to gravity. 
They both want to move. But the sun, which 
is more massive, resists moving (almost 
completely), while the Earth moves. 

In our example, the fixed magnet cannot 
move, so the coil with its "ghost magnet" 
moves toward the magnet if the "ghost 
magnet's" south pole is facing the real 
magnet's north pole ("unlikes" attract). 
When the battery is flipped, the coil's north 
pole repels the magnet's north pole and the 

coil moves away. Our "ghost magnet" also 
suggests that a magnet should have two 
poles. The "ghost" does so because each 
end of the coil supports one pole. You can't 
have just one end of a coil. 

Now imagine flipping the battery from 
right-side-up to upside-down back and forth 
100 times a second. The coil would move 
left and right 100 times a second. Now 
attach a delicate membrane to the left end 
of the coil. This membrane will shake the air 
molecules 100 times per second and we 
will hear a 100-Hz bass tone. We have a 
speaker. We can't flip the battery that fast, 
but we can attach a pair of wires carrying 
electrical oscillations to the coil. We then 
convert an electrical signal to sound. That's 
what a speaker does! 
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We give the sketch for the speaker in 
Fig. K-10 below. It is the design for the 
common dynamic speaker. The input signal 
is electrical. Consider a periodic wave such 
as a sine wave. The electrical current 
oscillates in step with the crests and 
troughs of a sine wave. The crests push 
current in one direction, the troughs pull 
current in the opposite direction. The coil 

changes the magnetic field it produces in 
step with the crests and troughs. The 
changing magnetic polarity (north-south to 
south-north) results in pushes and pulls as 
the magnetic field interacts with the fixed 
magnet. The coil and cylinder vibrate back 
and forth. The diaphragm at the left vibrates 
the air and produces acoustic waves. We 
hear the sound of the sine wave. 

 

 
 

Before we leave this section, we would 
like to point out that the physicist Ampère 
(1825) expressed in mathematical form how 
a current through a coil produces a 
magnetic field, a phenomenon first 

observed by Oersted in 1820. This is called 
Ampère's Law.  It is the basic law of 
electricity and magnetism that is applied in 
the invention of the speaker. 
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Microphones 
 

Here we consider the invention of the 
dynamic microphone, the common 
microphone we encounter. There is a 
beautiful symmetry in nature that makes 
possible the invention of the microphone. 
The microphone is simply a speaker used 
in reverse. The laws of electricity and 
magnetism express this symmetry in 
nature. This means that if you talk into the 
diaphragm part of a speaker, the vibrating 
diaphragm will result in the production of an 
oscillating electrical signal. By this 
symmetry in nature, we mean that the 
cause-effect relationship, seen in the 
speaker, works backwards. 

This counterpart law that says the 
reverse will work, was announced by 
Faraday in 1831 (Henry, an American, 
failed to publish his discovery in 1830). It is 
known as Faraday's Law. When you force 
the cylindrical coil to move back and forth 
near the fixed magnet, the coil "sees" the 
north pole of the magnet come toward it 
and then away from it. It "senses" a 
changing magnetic field. When the coil is 

away from the magnet, it "senses" little or 
no magnetic field. As it is suddenly brought 
over to the magnet, the coil envelops the 
magnetic field. The coil "experiences" a 
changing magnetic field inside itself. The 
result is a surge of current through the coil 
each time there is a change. When the coil 
leaves the magnet (decreasing magnetic 
field inside the coil), the current flows one 
way. When the coil envelops the magnet 
(increasing magnetic field inside the coil), 
the current generated in the coil flows the 
other way. 

We can summarize Faraday's Law by 
saying that a changing magnetic field 
creates electricity in the surrounding coil. 
We are careful in the statement of 
Faraday's Law below to say "produces an 
electric field" because if there is no coil 
around, there is no electricity. There is the 
potential to produce electricity, a potential 
to push charges. A "ghost battery" is in the 
surrounding space, the electric field. Put 
that wire in place, and the "ghost battery" 
works on the charges in the wire to get 
them moving. You then get electricity. 

 
 

 
 
 

Faraday's Law got you to school today if 
you came in a car, truck, bus, cab, or 
motorcycle. Magnetic fields are created in a 
coil by your 12-volt car battery. Then, the 
magnetic field is rapidly turned on and off 
by a switch. A second coil surrounding the 
first coil "experiences" the sudden 
collapsing of the magnetic field. This 
extremely quick collapse generates 
electricity at 20,000 volts! 

This voltage is distributed to your spark 
plugs according to the firing order for your 
car; and the 20,000 volts produce a spark 
across the small gap of the plug. The spark 
ignites the gas, which gas expands, 
pushing a piston that turns the mechanism 
that will eventually get your wheels turning. 
Faraday's Law enables you to go from 12 
volts to the 20,000 volts. 
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Fig. K-11 below gives the schematic for 
the dynamic microphone. It is essentially 
the speaker diagram interpreted 
backwards. Someone speaks into the 
diaphragm. The diaphragm vibrates in step 

with the sound waves from the voice. The 
moving coil around the magnet produces a 
corresponding electrical output signal in the 
coil wires. 

 

 
 

We leave this chapter by pointing out a 
further underlying beauty in nature. The 
stricter statement of Faraday's Law says 
that a "changing magnetic field produces an 
electric field." This electric field can give us 
electricity if a wire coil is brought nearby. 
Someone observed that Ampère's Law is 
not really the strict opposite. Ampère's Law 
states that a "current produces a magnetic 
field." 

The strict opposite to Faraday's Law is 
that "a changing electric field produces a 

magnetic field." The physicist Maxwell 
observed this and combined this additional 
law with Ampère's Law around 1865. This 
completed the puzzle. The laws of 
electromagnetic theory were now complete. 
And we received a bonus! The fact that 
changing magnetic fields produce electric 
fields, which if changing, in turn produce 
magnetic fields has great consequence. It 
predicts the existence of electromagnetic 
waves. These waves include radio waves 
and visible light. 
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Table K-2 below summarizes the laws of 
electricity and magnetism. The four basic 
laws of electromagnetism are referred to as 
Maxwell's Equations. The Maxwell 
Equations predict the existence of 
electromagnetic waves. These are defined 
by their wavelength or frequency. 

We have the familiar wave relation �f = 
c, where c now stands for the incredible 
velocity of light (300,000 km/s or 186,000 
mi/s). The electromagnetic (EM) spectrum 
of waves is broken into seven regions. 

From short to long wavelengths, these are 
gamma rays, x-rays, ultraviolet light, visible 
light, infrared light, microwaves, and radio 
waves. 

For our study of sound reproduction, we 
are mostly interested in the radio end of the 
spectrum. The wavelengths of radio waves 
range from a few centimeters (microwaves) 
to hundreds of meters (AM Radio). Table K-
3 lists the rich variety of radio waves and 
their frequencies. 

 

 
 

 
 
 

--- End of Chapter K --- 
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L. Sound Systems 
 

We address three more sound sources 
in this section. These are the record player, 
tape deck, and CD player. They represent 
three levels of improvement in sound 
reproduction. Faraday's Law and Ampère's 
Law will be important in our discussion of 
records and tape decks. We state applied 
versions of these laws in Table L-1. The 

two essential devices are the coil 
(electricity) and magnet (magnetism). Note 
again the interplay between electricity and 
magnetism. These are manifestations of the 
unified electromagnetic force of nature. 
Such unification makes possible the 
invention of diverse sound components. 

 
 

 
 
Record Players 
 

The record is our first practical method 
of storing sound. Sound vibrations are 
encoded as small hills and valleys on a 
disk. Thomas Edison invented the first 
model, a cylinder with grooves, in 1877. He 
coined the word phonograph at that time. 
However, the disk shape became the 
standard. The word gramophone was 
introduced in 1887 to distinguish the two. In 
America, the word phonograph is used to 
refer to both. 

Fig. L-1 illustrates an old phonograph 
that is purely mechanical. You turn the 
crank and a needle vibrates to the bumps 
on the disk. The  vibrations are amplified by 
the horn. 

  
 

 
Early records had vertical hills and 

valleys. Later, one finds lateral cuts. We will 
illustrate the vertical cut and then move on 
to the two-channel stereophonic records. 
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The early records sounded poorly 
according to later standards because the 
hills and valleys in the grooves were cut 
using actual sound pressure itself. Starting 
around 1925, the cutting was done 
electrically. Cutting and playing back a 
record electrically brought about a 
significant increase in performance. 

Engineers used the same electro-
magnetic techniques we encountered with 
speakers (Ampère's Law) and microphones 

(Faraday's Law). Playing a record is the 
reverse of cutting a record. Fig. L-2 below 
illustrates the vertical or hill-and-dale cut. 
Here we keep the coil fixed and let a tiny 
magnet move. Remember that when there 
is a force between two bodies and one 
body is held fixed, the other moves. That's 
why we used the words "relative motion" for 
the description of the coil-magnet 
movements in our restated laws in Table L-
1. 
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Monophonic or monaural records turned 
at various rates. The first popular standard 
records, made with a shellac compound, 
had a spin-rate of 78 rpm (rotations per 
minute). The later standards were the 
smaller 7"-diameter "45 (rpm)" with a large 

center hole, and the 12"-diameter long-
playing (LP) records (33 1/3 rpm). Table L-2 
lists data for these historical formats. The 
45 became widespread for popular singles 
in the 1950s, while the LP was the standard 
for classical music. 

 
 

 
 
 

The more expensive record players that 
appeared in the 1950s were able to run at 
three speeds: 78, 45, and 33 1/3. However, 
the 78s were phased out by this time. Then 
mono systems were outdated when stereo 
arrived in the late 1950s. The mono stylus 
assembly (cartridge) can only pick up one 
channel of information. Fig. L-3 illustrates 

the playback design of the stereo record. A 
stereo cartridge is needed to pick up two 
channels separately, the two series of 
undulations at 45° (see Fig. L-3). Stereo 
cartridges however can play a mono record. 
Why? The best stylus is a diamond needle, 
oval at the tip. 
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Fig. L-4 shows a side view of a 
turntable. It is important for the stylus not to 
press down on the record any more than is 
necessary. A fulcrum is used with a 
counterweight so that the heavy arm will not 
lean down very much on the record surface. 
The force of the stylus on the grooves is 
reduced to about 1 gram in this way. 
Physicists do not like to use the term "gram" 
for force or weight. Strictly speaking, gram 

is a unit of mass. Mass and weight are not 
the same. For example, your mass is 
constant, but your weight on the moon is 
1/6 of your weight on Earth. However, by 
saying gram-weight, we are okay. One 
gram-weight is the weight of one gram of 
mass on Earth. At what gram-weight does 
the record player in Fig. L-4 track on the 
moon? 

 
 

 
 

Fig. L-5 gives us a top view, illustrating 
two tracking methods. The record pulls the 
stylus end straight out in each case. This is 
fine for linear tracking, but causes the arm 
to "skate" inward toward the center in the 

usual arrangement. This "skating force" is 
balanced by a spring that supplies an 
outward force on the arm to compensate. 
This spring force is called the antiskating 
force. 
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Tape Recorders 
 
   Tape recorders became available in the 
mid 1950s due to the invention of plastic 
magnetic tape. The tape has tiny magnetic 
particles. These "baby magnets" are called 
magnetic dipoles. The magnetic coating 

that provides these are iron oxides or 
chromium oxides. We represent the 
magnetic dipoles as small arrows on the 
tape in Fig. L-6. Each arrow tip is a tiny 
north pole, while each tail is a south pole. 
The sizes are highly exaggerated in the 
figure. 

 
 

 
 

The dipoles in Fig. L-6 change direction 
in step with the sine wave illustrated. A 
maximum displacement (top of a crest) is 
represented by a dipole on the tape 
pointing to the right. Can you decode the 
other orientations? As the tape is moved 
across the playback head, the different 
magnetic orientations are picked up by the 
iron head. The iron is soft "magnetically," 
meaning that permanent magnetism will not 
occur. 

The changing magnetic field is "sensed" 
by the surrounding coil at the other end. 
The changing magnetic fields induce 
electrical currents in the coil (Faraday's 
Law). The current changes in step with the 
magnetic field in the tape-head, which 

changes are in step with the changing 
orientations on the magnetic tape. To make 
a recording, the order is reversed. The coil 
in the record head (a 2nd head) receives 
electrical signals from a source. These 
cause magnetic changes in the core 
(Ampère's Law), which arrange the dipoles 
on the tape. 

An erased tape is made by applying a 
high-frequency sine wave with the erase 
head (a 3rd head), so that the dipoles can't 
respond well. They become randomized. 
The early common tape recorders had two 
tape speeds: 3 3/4 inches per second (ips) 
and 7 1/2 ips (good for music). Cassettes 
use 1 7/8 ips, a speed unheard of for music 
in the 1950s. We will see why later. 
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CD Players 
 

Compact disks (CDs) employ a new 
encoding technology, called digital 
technology. So far, we have encountered 
signals that vary continuously. This type of 
signal is called analog. Think of a meter 
with a dial, where the pointer can point to 
any value. On the other hand, digital signals 
are discrete. A piano is a digital system 
designed for your digits (fingers). You have 
88 discrete choices of tones. A guitar or 
violin is an analog instrument because you 
can play between the regular tones by 
holding the string at any arbitrary point. The 
frets on a guitar assist you in using the 
guitar as a "digital" instrument. 

Digital information consists of a series of 
numbers. Two digits, 0 and 1, are ideal for 
electronic processing and computers. Using 
two digits is called the binary system. Table 
L-3 gives the conversion from decimal to 
binary for the numbers from 0 to 15. Think 
of the odometer in your car. When you get 
to a mileage like 999, all the 9s turn to 0s 
the next mile and you get a fourth digit, 
starting at 1, i.e., 1000. With binary, you run 
out of digits quickly. After a binary 111, all 
the 1s turn to 0s and you get 1000. Look at 
the binary progression in Table L-3 as a 
changing odometer reading, where only two 
digits are available, 0s and 1s. 

Another way to think of decimal 
numbers such as 3726 is to look at the 
position of the digits. The 3726 means 6 
units plus 2 tens plus 7 hundreds plus 3 
thousands. Reading right to left, you have 
units or 1s, 10s, 100s, 1000s, etc. You keep 
multiplying by 10 to get these numbers 
since there are 10 different symbols being 
used: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. For 
binary, we multiply by 2 instead since we 
have only two different symbols at our 
disposal: 0 and 1. So instead of units, 10s, 
100s, 1000s, etc. we have units, 2s, 4s, 8s, 
etc. 

 

 
 
Therefore, the number 10 in binary 

indicates (reading from right to left) 0 units 
and 1 two, i.e., 2. Binary 11 indicates 1 unit 
plus 1 two or 3 in decimal. Similarly, 110 in 
binary implies 0 units plus 1 two plus 1 four, 
i.e., decimal 6. To avoid confusion with 
decimal numbers, a subscript 2 is used to 
indicate binary (base 2). We can write 
binary 110 as 1102. As one last example, 
note that 11112 is equal to 1 unit + 1 two + 
1 four + 1 eight, i.e., 15. Go through all the 
binary numbers in Table L-3, carefully 
checking each one in this way. 
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Now we are ready to digitize a wave. 
Fig. L-7 illustrates a sine wave. The sine 
wave varies smoothly. It is an analog 
signal. To digitize it we stack small boxes to 
approximate it. We count how many boxes 
we need for each small section of the wave. 
We list these results in the table under 
height. Then we convert to binary with the 
assistance of Table L-3. 

The digitizing in Fig. L-7 is very crude. A 
real digital version would require boxes too 
small to count. The 0s and 1s for the coded 
information can be stored on a compact 
disk using a series of pits for the 1s. No pit 
can represent 0. These can be read by a 
laser. Compare a needle scraping in a 

groove (record) to a beam of light reflecting 
from pits in a groove of a compact disc 
(CD). The record wears out in a few years, 
but the CD is unaffected. The CD can last 
centuries! 

Also, digital format can be read by 
computers. Computers can store music in 
digital form. They can also process the 
stored information, enhancing and 
modifying it. Records and tapes have limits 
to the range of loudness you can store. Hills 
and valleys can only get so high. Magnetic 
tape has saturation limits on how many 
dipoles can align together in a small region 
of tape. Digital methods are much superior. 
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Fig. L-8 depicts a compact disc. The 
laser shines light on the disc from below. 
The laser employs infrared light (IR). 
Infrared lies beyond the red end of the 
spectrum and is invisible. The IR light 
reflects from the pits on the CD. The 
reflected light is detected and analyzed. 
Data is read from the inside out as the CD 
varies its turning speed from 500 rpm to 
200 rpm. The digital information is 
converted to an analog output signal which 
goes to the amplifier. 

The first CDs became available 
commercially in 1983. The LP record, an 
important medium for stereo sound for 20 
years (1960 to 1980), was in trouble. The 
phase-out period was underway. 
 

 
 

The CD is about 5 inches in diameter. It 
can store 74 minutes of music. Many old 
recordings of famous musicians have been 
transferred to CDs. However, these were 
recorded with analog technology. These 
original works are often processed and 
remastered digitally. The original recording, 
intermediate processing and remastering 
stage, and the final format are summarized 
by three letters, each being either A 
(analog) or D (digital). A CD with the 
designation AAD means originally recorded 

with analog methods, processed and 
mastered as analog, then digitized for CD. 
The ADD indicates that the original analog 
recording has been digitally remastered 
before encoding on the CD. The 
combination DDD indicates a digital 
recording, digital processing, and final 
digital format. Of course, with a CD, the last 
letter is always D. 

Let's return to the digitization of a sine 
wave. Refer again to Fig. L-7. The length of 
the rectangle is chosen so that two 
rectangles, side by side, extend to the 
wavelength of a 20,000-Hz tone. We say 
that we sample twice in the time-frame 
(period) of a 20,000-Hz tone. The sampling 
rate is 40 kHz (actually 44.1 kHz). The 
height of the rectangle is chosen so that the 
distance from the trough to the crest of the 
"biggest wave" is given by the largest 16-
digit binary number. This choice is called 
16-bit sound. The largest 16-bit number is 
1111 1111 1111 1111 which is 65,535. 
Since 0 is the first possible value, there are 
65,536 numbers possible. 

The amplitude is measured from 
equilibrium to crest, so the largest 
amplitude is one half this value, or 32,768. 
The loudness of a sound is given by the 
energy of the wave, which is related to the 
amplitude. The energy is essentially equal 
to the square of the amplitude. We state 
this without proof. It is saying that a water 
wave twice as tall has four times as much 
energy to hit you with. One 3 times as tall is 
9 times more energetic. Therefore, the 
loudness range goes from 0 to 32,768 x 
32,768. This is about 30,000 times 30,000 
or 900,000,000, which rounds off to 
1,000,000,000 (one billion). This is 
incredible dynamic range. Later we will 
learn that this corresponds to 90 decibels 
(90 dB). 

 
 
 

--- End of Chapter L --- 
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M. Analog Electronics I 
 
M-1. Flashlight 
 

Our first circuit application is the 
flashlight. It is a simple electrical circuit with 
a battery, bulb, and wire or metal to connect 
the two. These components are discussed 
below. The first component we consider is 
the battery, the device that produces 
moving charge, i.e., electricity. 

A battery gets charges moving for us. 
The battery separates charges chemically. 
Then the electric force serves as the force 
that makes the electrons move toward the 
positive region. A battery is sketched below 
in Fig. M-1 along with the symbol used by 
engineers for one battery cell. The minus is 
at the bottom, while the absence of 
electrons causes a plus region at the other 
terminal. If a wire were to connect both 
terminals (dangerous), electron flow 
through the wire to the plus terminal would 

dangerously exceed normal levels. This 
would be very bad for the battery for the 
flow would be too intense. The electricity 
must do some work, e.g., heat a bulb 
filament, so that the flow be within operating 
limits of the battery. Such a lower flow rate 
gives the battery time to keep up with the 
flow by constantly bringing the electrons 
internally back to the minus terminal. 
However, after the lifetime of the battery, 
the battery can no longer separate the 
electrons. We then say that the battery is 
dead. 

A measure of the strength of the battery 
is given in volts. A typical flashlight battery 
has 1.5 V (1.5 volts); transistor radio 
batteries are 9-V batteries. If we stack 
batteries as in a flashlight cylinder, the 
voltages add. Two 1.5-V batteries in a 
flashlight result in a voltage of 3.0 V.

 
 

 
 
 

The simple circuit for the flashlight is 
given in Circuit 1. Suppose we have a bulb 
that will light up when 4.5 V is applied to it. 
We then stack three 1.5-V batteries in order 
to obtain 4.5 V. See the flashlight circuit for 
this bulb in Circuit 1 at the right. 

The bulb consists of a fine tungsten 
filament surrounded by some inert gas 
(non-reactive). The filament heats up due to 
the current going through it. The lack of 
oxygen in the bulb prevents the bulb from 
burning up. The filament glows, giving off 
visible light and infrared light (heat). 
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Current is a measure of how many 

electrons pass a given point in one second. 
We need not concern ourselves with how 
many electrons move by per second. We 
simply use the convenient unit ampère or 
amp, abbreviated A. The letter I is used to 
designate current, e.g., I = 5 A  (5 amps) . 
 
1. Direct Current (DC). The current flows in 
one direction. The battery used in Circuit 1 
supplies direct current in the circuit. A 
typical bulb in Circuit 1 may draw a current 
of 0.1 A (one tenth of an amp). It is 
convenient to use a smaller unit of current, 
thousandths of an amp or milliamps. The 
abbreviation for milliamp is mA. Since 0.1 A 
can also be written as 0.100 A, we readily 
see that we have 100 thousandths of an 
amp, i.e., 100 mA. 
 
2. Alternating Current (AC). The current 
flows back and forth. This type of current is 
easy to generate by power companies. Our 
light bulb doesn't care which way the 
current flows. It would still light up if we 
used alternating current. Think of 
alternating current like a sine wave 
describing electrons pumping back and 
forth in a wire. 
 

Resistance limits the flow of current in a 
circuit. Resistance is measured in ohms. 

The symbol for ohms is Ω. A resistor is a 
circuit element whose purpose is to provide 
resistance. Think of a resistor as a "clogged 
pipe with rags," where the "current of water" 
has trouble getting through. Before we see 
a dimmer circuit that will illustrate the 
importance of resistors, let's consider a 
simple circuit of a battery and resistor. This 
circuit is not useful for anything other than 
illustrating a basic principle of electronics: 
Ohm's Law. 

Note that in Fig. M-2 below the current 
direction is pointed away from the plus side 
of the battery. This is a convention. The 
electrons actually move the other way. But 
since electrons are negative, we point the 
arrow in the opposite direction. This helps 
make the math simpler for engineers. 

Ohm's Law relates the three quantities 
V, I, and R. The law states that V = IR. 
Think about this. You would expect it. If you 
keep the battery strength V constant, then 
less resistance (R) means more current (I) 
and vice versa. Recall that this logic is the 
same we used to discuss v = λ f, where the 

wave speed is constant. If you decrease λ, 
you increase f and vice versa. 

Here is an example. For one cell, V = 

1.5 volts. Consider a resistance of 15 Ω. 
Then, V = IR becomes 1.5 volts = I x (15 

Ω). The current "I" must be one tenth, i.e., 
0.1, A since one tenth of 15 is 1.5. We can 
also rearrange V = IR as follows:  I = V/R = 
1.5/15 = 0.1 A = 100 mA. 
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M-2. Dimmer 
 

The circuit at the right (Circuit 2) makes 
the bulb glow dimmer due to the resistor R. 
Can you design a three-way dimmer circuit 
so that the light bulb has three settings? 
HINT: Modify the circuit so the pathway at 
the bottom has three possible upward turns, 
one with resistor R

1
 (this can be the resistor 

with the large resistance that will cause the 
bulb to glow very dim), a second with 
resistor R

2
 (this can be a resistor with less 

resistance), and a third upward path that is 
a "pure" wire (no resistance). Then use the 
switch symbol seen in C3. Have your switch 
come down from the bottom of the bulb, 

allowing it to choose one of the three 
pathways to complete  the circuit.   

 

 
 

 
M-3. Flash 
 

Circuit 3 (C3) introduces a new circuit 
element called a capacitor (C). The 
capacitor can be thought of as consisting of 
two metal plates. The battery symbol shows 
two cells. This is the standard number of 
cells to show (in a circuit diagram) with any 
written value by the side of the symbol. 

Note the switch symbol at the top. The 
switch can be thrown to the left or right. 
When the switch is thrown to the left, the 
capacitor is connected to the battery. Minus 

charges gather temporarily (−) on the 
bottom plate and the absence of electrons 
on the top plate makes the top plate 
positive (+). 

The switch is then thrown to the right. 
Negative charges rush through the bulb to 
get to the other side (plus side) of the 
capacitor. Current flows through the bulb. 
However, since the capacitor loses its 

charge as electrons return to the top plate, 
the bulb is on for only an instant. The unit 
for capacitance is the farad (F), named after 
Faraday. 

The capacitor is not a battery; it cannot 
remove electrons from the top plate and 
bring them back down to the bottom plate 
internally as a battery does. The capacitor 
only stores electricity and when this 
electricity is used up, the capacitor is 
neutral again (no net charge on either 
plate). 

The rush of current is sudden and dies 
down quickly. If a resistor were in the 
charging left loop between the battery and 
the capacitor, the charging of the capacitor 
would take time since current flow would 
then be reduced to more of a trickle of flow 
due to the resistor. 
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M-4. Delayed Light 
 

A transistor is a circuit element with 
three wires protruding from a small 
container. The schematic of a transistor is 
seen in Fig. M-3. The three wires of the 
transistor are called the base (B), collector 
(C), and emitter (E). When a small amount 
of current enters the base (B) of the 
transistor, lots of current can then flow from 
the collector (C) to the emitter (E), provided 
that a battery is around nearby to supply 
the current. The small amount of current 
from B and the great amount of  from C 
both leave the emitter E. We will not delve 
into the inner structure of a transistor. 
 
 

 
 

 
By carefully controlling the small base 

current, we can control the large currents 
capable of flowing from the collector to the 
emitter. Circuit 4 is a circuit that gives off 
light when the touch switch is pressed. 
When the touch switch springs back after 
release, the light stays on for awhile. After a 
certain time, the light then goes out 
automatically. Such a circuit is convenient 
for lighting a garage until you can drive the 
car out. After you're a block away or so, the 
garage light turns off by itself. However, 

Circuit 4 is a "doll-house" version of the real 
circuit. 

When the switch is pressed, current 
rushes to the capacitor (C). The capacitor 
charges immediately since the path to it is 
clear. After the capacitor is charged, current 
trickles through the resistor activating the 
transistor. Current can now flow through the 
transistor, and the bulb glows. When the 
switch is released, it takes awhile for the 
charge on the capacitor to empty through 
the resistor. So the bulb stays on until the 
capacitor gives up its charge (discharges). 
After this, the capacitor is neutral, there is 
no current, and the bulb is off. 
 
 

 
 
 

We will see later how a transistor can be 
used as an amplifier in a sound system. 
Can you modify the above circuit so that 
one needs to hold the switch down for 
awhile in order for the capacitor to charge 
fully? HINT: Insert a resistor in the vertical 
section of the upper left loop. Now it takes 
time to charge the capacitor. The light does 
not go on immediately. However, when the 
switch is released, the light will stay on for a 
while as before. 
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Let's review the four basic circuits we 
have encountered. These are reproduced in 
Fig. M-4 below. The simplest possible 
circuit is the flashlight. It consists of the 
minimum number of circuit elements in 
order to make a single circuit loop. You 
need a battery and one other element, in 
this case the bulb. There are only a few 
basic circuit elements engineers use as 
building blocks for circuit design, just as 
there are few notes in a musical scale. 

Notes serve as building blocks for 
musical lines. For example, the common 
jazz blues-scale has only 6 notes, 3 of 
which lie outside the major scale we 
encountered earlier. The jazz improviser 
uses these notes in a traditional blues, 

perhaps only occasionally using other 
notes. Similarly, electrical engineers rely 
mostly on about 6 circuit elements: the 
battery (or power source), bulb (or some 
visual-display element), resistor, capacitor, 
transistor, and diode (which we haven't 
looked at yet). Observe how carefully each 
circuit below adds one more of the basic 
circuit elements. 

The dimmer should have a variable 
resistor to vary the light intensity. Sketch an 
upward slanted (to the right) arrow across 
the resistor in the second circuit below. This 
indicates a variable resistor. Variable 
resistors have a turning knob to vary 
resistance. 
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The source of energy for circuits is the 
battery or the electrical outlet on your wall. 
Batteries supply direct current (DC) while 
your wall outlet provides for alternating 
current (AC). The voltage of typical 
batteries is 1.5 V for the cylindrical variety 
and 9 V for the transistor batteries. The 
voltage from your wall outlet is about 120 V 
(110 or 115 V), alternating as a sine wave. 
Voltage for alternating current is defined as 
70% of the amplitude. 

Two aspects of electrical usage are 
important for cost analysis. These are the 
voltage you need and how much current 
you want to draw. If you need 3 V instead of 
1.5 V, you need to buy 2 batteries and 
place one on top of the other. More voltage 
means more money. Also, if you tax the 
batteries, demanding lots of current, the 
batteries do not last as long. It costs to 
replace them. Engineers design bigger 
batteries with the same voltage so that 
more current can be supplied, but these 
bigger batteries are more expensive. 

Battery sizes for 1.5 volts include the 
common sizes AA, C, and D. You might 
need 8 size C batteries to get 12 volts (8 
times 1.5 V) for a boom box. 

To assess the cost, we need to know 
the voltage and the current. A simple index 
is obtained by multiplying these together. 
The result is called the power (see Fig. M-5 
below). The unit for power is the watt, 
named after the famous Scottish inventor 
James Watt, who improved the steam 
engine in 1769. Watt's steam engine gave 
us the new form of power that led to the 
industrial revolution. However, the study of 
electricity was in its infancy then. We had to 
wait over another century for common uses 
of electrical energy in factories and homes. 
The light bulb was not invented until 1880 
by Thomas Edison. It is appropriate to 
define the unit for power as the watt. 

The power equals the voltage times the 
current (P = VI). This applies to both DC 
and AC circuits. We will give two examples, 
one for each of these types of circuits. 
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Fig. M-6 illustrates a toy flashlight circuit 
with one cell. The current is measured to be 
0.1 A. To measure current you simply break 
the wire and stick a meter in the path. The 
current then flows through the meter. You 
can measure voltage by changing the 
setting on the meter (multimeter) and 
touching each end of the battery (black 
probe to negative side, red to positive). The 
power is then given by the product. The 
answer is 0.15 watts, or 0.15 W. What is 
this power in milliwatts (mW)? 
 

 
 

Fig. M-7 illustrates an alternating-circuit 
example. It is a clothes dryer. Note the 
circle with the wavy line inside. We use this 
symbol for an alternating voltage source. 
The wavy line is a sine wave. The voltage 
(about 120 volts) from your home outlet 
alternates as a sine wave at 60 Hz. Your 
clothes dryer is special, requiring two 120-
volt outlets. The electrician wires up this 
combination, which takes a heavy-duty plug 
and wire to handle 240 volts. The dryer 
element is just a resistor that heats up. 
Note the large alternating current of 24 
amps. The current oscillates at 60 Hz due 
to the alternating power source. 

 

 
 

The power consumption for the clothes 
dryer is 5760 watts, i.e., about 6000 W. 
This is a lot of power. The electrical 
company that supplies electricity to your 
home is interested in how long you keep 
this clothes dryer on. For example, suppose 
you dry your clothes for 2 hours. We say 
you use 12,000 watt-hours of electricity. We 
have multiplied again! The amount 12,000 
watt-hours is more conveniently expressed 
as 12 kilowatt-hours (12 kWh). 

Your electric company charges by the 
kilowatt-hour (kWh). Let's assume you are 
charged $0.10 for one kilowatt hour. Then, 
leaving your dryer on for 2 hours costs 
$1.20. This amount of money is what you 
pay for the energy used. The power gives 
you the level at which you use energy. It is 
a rate, analogous to speed. When you 
multiply speed by time, you get distance. 
Here, we multiply power by time to get the 
actual energy used. 
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Table M-1 below gives a list of common 
household electrical appliances and typical 
power consumptions. Usually there is a 
sticker on the device that lists the power. 
Sometimes voltage is listed (115 or 120) 
and the current instead of the wattage. You 
just multiply the given voltage value with the 
value for current in amps to get the power 
(wattage). The manuals for stereo and TV 
equipment also indicate the power 
consumption under the specifications 
section. Stereo "buffs" like specs. 
Unfortunately, due to the low level of 
science literacy in our culture, such 
information is often omitted in manuals for 
refrigerators, dishwashers, and other items. 
You have to look for the sticker on the 
appliance. 

Due to those big values at the end of 
Table M-1 below for such household 
appliances as the electric hot water heater, 
the electric clothes dryer, and electric 
range/stove, the author switched to natural 
gas for his new home. Gas is available in 
the neighborhood. The electrical power for 
the gas water heater is 0 W. It is not 
plugged in. The same is almost true for the 
gas stove, but you need the lights, fan, and 
clock. During the 4-day blizzard/power 
outage in the early 1990s, many 
households were without heat, hot water, 
and a functional range/stove. With gas, the 
author enjoyed hot showers, hot spaghetti 
dinners, and heat - as the two gas fire-
places cranked up living-room temperatures 
to 80°F! 
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Note the rather high power con-
sumptions for devices that produce heat 
such as the coffee maker, toaster, popcorn 
maker, and portable hair dryer. The toaster 
is a simple circuit, essentially a power 
source connected to a resistor. The resistor 
gets warm as the current flows back and 
forth. The warmth heats and toasts the 
bread. The clothes dryer is basically the 
same idea, but doubling up on the voltage 
and using a motor to turn the drum that 
holds the clothes. 

Central air conditioning is also high. 
Similar to the clothes dryer, it uses the 
doubled-voltage value of about 240 volts 
and draws much current. In comparison, 
electronic equipment such as tape decks, 
CD players, and VCRs have little power 
consumption. The TV or computer monitor 
demands more power, around 75 W, the 
same as a 75-watt light bulb. The power 
supply in a computer is typically 150 or 200 
W to run the computer and peripherals. The 
power needed for the computer and monitor 
is around 250 W. 

The author's portable computer 
(notebook) requires less, around 40 W. The 
night light uses the least power in the 
author's home. Calculate the monthly 
expense to keep the night light on, 10 hours 
per night for 30 days, if the cost per 
kilowatt-hour is a dime. 

Electrical current is dangerous to the 
body. One must be very careful working 
with electrical appliances. Keep your hands 
dry. Water with its impurities conducts 
electricity very well. It acts like a wire. 
Never touch electrical components in 
circuits. Even if the circuit is off, capacitors 
can store much charge. It can still be 
dangerous. The third prong in an electrical 
wire connects the frame of the appliance to 

keep the outer surface neutral (at ground). 
If a wire or component becomes loose and 
touches the frame, current flows through 
the third prong and this should throw the 
circuit breaker, breaking the circuit at the 
source. 

Once the author stuck his fingers into a 
wall outlet when he was 4 years old. He got 
shocked and cried for his dad. The wall 
outlet voltage is approximately 100 volts. 
The resistance for dry skin is in the range of 
100,000 to 1,000,000 ohms (Ω). We will 

use 100,000 Ω. The current can be found 
from Ohm's Law: V = IR. We have 100 = I 
(100,000). The current I = 100/100,000. We 
cancel zeros to get I = 1/1000 A = 1 mA. 

Now we check the health data to see if 1 
mA is dangerous. A current of 1 mA is felt 
as a tingling sensation. However, if your 
skin is moist, the resistance is lower. For a 
resistance dropping by a factor of ten, the 
current goes up by the same factor. We 
then have 10 mA, beyond the 5-mA safe 
limit. You feel some shock. If you are 4 
years old, this is quite an experience. Now 
if a baby sticks a finger in the mouth first, 
the resistance of the newly-wet skin goes 
way down and current soars upward. 

At around 10-20 mA, sustained 
muscular contraction can prevent one from 
letting go if one grabs on to a live wire. This 
happened once to an electrician friend of 
the author. The electrician grabbed a live 
source with his hand. He couldn't let go. 
Luckily, he was standing on a ladder and 
jumped off using his legs. He fell, freeing 
his arm from the electrical source. Standing 
on a wet basement floor (electrical ground, 
neutral) and fooling with a power source 
can allow current to travel through the trunk 
of the body, through the heart. 
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Table M-2 below gives the physiological 
effects of various levels of current (60-Hz 
alternating like that coming from household 
outlets in the US) through the trunk of the 
body. The trunk is chosen so that the 
current passes through the heart. The heart 
is governed by natural biological forces 
electrical in nature. Introducing electrical 
current from outside can interfere with the 
normal beating of the heart. The dangerous 
currents are in the neighborhood of 100 to 
300 mA. Note that for very high currents 
such as 6000 mA (i.e., 6 Amps) the heart 
freezes, then recovers. Remember though 
that the current is applied for only 1 second 
for the data in Table M-2. 

The heart muscle gets confused when 
current is in the 100-300 mA range. It starts 
to beat irregularly. This effect is called 

ventricular fibrillation. It causes death. One 
can die within seconds or minutes. If an 
emergency team is nearby, the heart can 
be shocked again, this time sending in high 
current to freeze it. The hope is then to 
restart it beating normally. 

The current path through the body is 
influenced by which part of the body 
touches the circuit and which other part of 
the body part acts as the ground. Current 
flows from higher voltage to lower voltage. 
The resistance of your skin/body plays a 
role. The usual amount of current drawn by 
the appliance you happen to stick your 
hand into is not the determinating factor. 
The important parameters are the voltage 
you touch and your resistance! You then 
use V = IR to calculate the current I. 

 
 

 
 
 
 
 
 
 
 
 

--- End of Chapter M --- 
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N. Analog Electronics II and Digital Electronics 
 

 Fig. N-1 illustrates the three basic 
stages of sound reproduction as it was 
realized in the stereo high-fidelity systems 
of the 1960s. The sources are the turntable 
(record player), tuner, and tape recorder 
(reel-to-reel). The amplifier is the common 
second stage. The third stage is the 
speaker, one for each channel. The hi-fi 
buff would have a collection of hundreds of 
LPs and dozens of tapes. The tapes would 
be recorded and played at 7.5 ips for high-
fidelity. In order to get the Rachmaninoff 
Third Piano Concerto on one side of a tape, 
you need 40 minutes. A tape speed of 7.5 
inches per second calls for a tape length of 
7.5 x 60 = 450 inches for one minute. This 

is 450/12 = 37.5 feet, almost 40 feet for a 
minute of music. So you need about 1600 ft 
of tape. No problem. Tapes were sold on 7-
inch diameter reels with 1800 feet and other 
lengths. You could get 2400-ft and even 
3600-ft reels. How many minutes of music 
can you tape on one side of a 3600-ft reel 
at 7.5 ips? 

We have already studied record players, 
tape decks, and speakers. In this chapter 
we investigate the amplifier and tuner. By 
the 1970s it was standard practice to 
purchase the tuner with the amplifier 
combined in one unit. Such a unit is called 
a receiver. 
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Amplifiers 
 

We mentioned in the last chapter that 
we are not going to study the inner 
structure of the transistor, which is the 
semiconductor technology of solid-state 
physics. However, in this section we will 
present the old vacuum tube which played 
the role of a transistor. The transistor was 
discovered at Bell Labs in 1948. Later in the 
early 1970s, the integrated circuit (IC) could 
fit many transistors in smaller form on one 
chip. Today, we can have millions of tiny 
transistors in a chip we can hold in our 

hand. Such innovations made possible the 
desktop computer of the 1980s and 
beyond. All of these developments are not 
possible with vacuum tubes. 

We can gain insight into the function 
played by a transistor by looking at its 
earlier counterpart, the triode vacuum tube. 
The triode was invented in 1907. Fig. N-2 
below compares a triode to a transistor. Our 
aim is to understand how each functions as 
an amplifier. 

 
 

 
 
 

There is a vacuum inside the tube in 
Fig. N-2. A heater (not shown) is used to 
boil electrons off the negative plate 
(connected to E), which plate is called the 
cathode. Electrons are also called cathode 
rays. Your TV has a cathode-ray tube that 
boils electrons off so they can be guided to 
the screen and light up phosphors. A 
current flows, by our convention, from C to 

E (opposite direction). This is a large 
current. Making the grid negative, 
discourages electrons to come toward it on 
their way to C. The grid can be thought of 
as a shield. Minor fluctuations in charge at 
B are then reflected in large changes in the 
main current from C to E. The triode 
amplifies the changes fed in at B. 
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The transistor does essentially the same 
thing. A little current fed into the base B, 
activates the transistor so the pathway is 
now clear for lots of current to flow from C 
to E. Increase the little current, and you see 
a corresponding enhanced change in the 
main current. Think of the base as a stream 
that feeds into a structure that opens the 
dam to a river. A mechanical advantage is 
supplied by a fulcrum-counterweight 
structure (remember the record player) so 
that when the little stream pushes "a small 
trap door" open, the mechanism raises the 
flood gates for the river to flow. The plus 
and negative in our transistor diagram 
corresponds to differences in elevation. 
Plus means high elevation and negative 
means lower elevation, or ground in 
electronics terminology. 

The river always wants to flow 
downstream but it can't because the main 
gate prevents it. Unless these gates are 
opened by the action of the little stream, 
nothing happens. If the little stream pushes 
the "trap door" only half way, then, the large 
volumes of the river water flow but at half 
strength. If the "back trap door" (the base B) 
is pushed in all the way, then the entire 
river current flows. Now play with the "back 
door" pushing it in and pulling it back 
rapidly. These small fluctuations are 
reflected in the larger changes of the river 
flow. The river current oscillates in step with 
the base stream oscillations. This is our 
amplifier action. 

A small changing electrical signal fed 
into the base of the transistor or the triode 
produces a corresponding larger changing 
main current from the collector to the 
emitter. This larger varying current "to the 
tune" of our base-input signal is our 
amplified signal. The transistor is far 

superior to the vacuum tube. Transistors do 
not boil off electrons from a plate and 
therefore do not need heaters. Transistors 
are smaller. Therefore, devices made with 
transistors are smaller and cooler than 
those made with vacuum-tube technology. 

Fig. N-3 illustrates the use of the 
transistor as an amplifier. The small input 
signal is a sine wave. Note that we need 
two wires for a signal. The bottom wire is 
ground and the top wire is the live wire on 
which our small voltage fluctuations occur. 
The small input oscillations are magnified in 
the main current fluctuations in step with it.  
In order to tap into this amplified signal, we 
attach a resistor on top of the transistor in 
Fig. N-3. When the current rushes down in 
step with the input wave, we get a voltage 
across the resistor according to V = IR. The 
resistor experiences large voltage 
fluctuations due to the large currents. By 
"grabbing electronically" on to this resistor, 
we tap off the circuit our amplified voltage 
signal. 
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Tuners 
 
 

Tuners are radios without the amplifier 
and speakers. The circuit tunes in to 
receive a radio signal and decodes it. The 
tuner is another example of a source in our 
sound system. We have to amplify this 
weak source to get a strong output that can 
drive a speaker. We will focus on AM radio. 

The AM tuner consists of two sections. 
First, the circuit that tunes in the radio wave 
and second, the part that decodes the 
signal. Remember, AM radio waves carry 
an encoded signal in the modulation of the 
amplitude. 

The best way to understand the tuning 
circuit is by considering a mechanical 
analog, our old experiment shaking a ball 
on the end of a string (Fig. N-4). Let the 
shaking hand represent the incoming radio 
wave. Let the string represent an antenna. 
The signal we pick up is seen by the 
swinging ball. Refer to the resonance curve 
at the right in Fig. N-4. It's hard to get a 

response if the incoming frequency is too 
low or too high. However, for the middle 
frequency which we call the resonance 
frequency, we obtain the greatest response, 
i.e., amplitude for our swinging ball. 

The ball always swings at the same 
frequency of the hand, but only for middle 
frequencies do we get a nice large sweep. 
We can say that the mechanical system is 
"tuned" to respond to the hand shaking at 
the resonance frequency. If the hand is 
shaking back and forth at a high frequency, 
this signal cannot get to the ball. But if we 
shorten the string, "tuning" our system to a 
different resonance frequency, we then can 
get a response. This is the mechanical 
analog of "tuning in" to get a specific radio 
station. Imagine many "invisible hands" 
trying to get the attention of the ball. 
Depending on the length of the string, one 
oscillating hand succeeds, the one shaking 
at the resonance frequency. 
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Many signals in the air compete for the 
attention of your radio. However, the 
broadcasting frequency that succeeds is 
the resonance frequency you are tuned in 
to receive. The electrical analog to the 

mechanical resonance system is given in 
Fig. N-5. The incoming waves replace the 
moving hand. The incoming radio wave is 
an electromagnetic wave, a wave that 
electrons in an antenna can respond to. 

 
 

 
 
  

The resonance frequency for the 
oscillating charges is determined by the 
circuit components L, R, and C. The 
movement back and forth of charges in 
response to the driving radio wave is 
analogous to the movement back and forth 
of the ball on the end of the string. If we pull 
the ball back and let it go on its own, it 
swings. If we force a lot of negative charges 
on one side of the capacitor, the charges 
will race through the circuit to the other 
side. But what keeps the ball going to 
overshoot the center position? The inertia 
of the mass of the ball. 

Electrically, the coiled wire (the coil) 
does this. The reason is subtle. Consider 
the moment when the charges are flowing 
at full strength through the coil. Ampère's 
Law states that this current produces a 
magnetic field inside the coil. The charges 
begin to stop flowing through the coil when 
there aren't many left to flow. This decrease 
in current causes a decrease in the 

magnetic field produced by the current. The 
decrease in the magnetic field (a change) 
produces some electricity (Faraday's Law). 
This added electrical current gives the 
current "momentum" to keep going. So the 
charges overshoot the mark and charge the 
capacitor in the reverse way. Finally the 
current does stop. 

The capacitor is then charged the 
opposite way. But now, the charges start 
moving again, this time the other way. The 
charges are moving to establish 
"equilibrium," i.e., no net charge on the 
capacitor. The whole process repeats in the 
reverse direction. They overshoot again 
and the capacitor is charged back the way it 
was before. After this, they start again, 
moving back the other way and so on. The 
charges "swishing" back and forth resemble 
our oscillating pendulum. The resistor in our 
circuit is analogous to the resistance of the 
air through which our pendulum swings. 
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Let's continue discussing this subtle 
effect from different angles. When the 
charges start to flow, a magnetic field is 
produced (Ampère's Law). But going from 
no magnetic field to a magnetic field 
induces some current (Faraday's Law: 
changing magnetic field induces current). 
This electricity produced must oppose us. If 
not, we would be getting something for 
nothing. Before, when the magnetic field 
was decreasing, our current got a little kick 
(additional electricity) to keep the current 
alive for a little bit longer. Now, the 
magnetic field is increasing, so the 
electrical surge due to Faraday's Law wants 
to assist in keeping things the way they are 
- dead. Nature seems to work this way. It 
often opposes our desires. 

If we want to decrease the magnetic 
field inside the coil by cutting back on the 
current, nature works against this by giving 
the current a little kick in the same direction 
the current is going. But this is the opposite 
of what we are trying to do. If we want to 
increase the magnetic field inside the coil 
by an increase in current, nature works 
against us by "kicking" in the opposite 
direction. In each case, nature is trying to 
preserve the status quo, against our wishes 

to change things. This opposition in the 
circuit is called Lenz's Law. It is analogous 
to Galileo's Law of Inertia (also Newton's 
First Law) which states that nature wants to 
keep objects doing whatever they are 
doing. If a mass is at rest, it wants to stay at 
rest. If it's moving, it wants to keep moving. 
You need a force like friction to stop a 
sliding box. 

The electrical analog to the Law of 
Inertia is found in the behavior of the 
inductor (a coil). Current through a coil 
wants to keep doing whatever it's doing. So 
just as the mass of a pendulum overshoots 
equilibrium due to its inertia, the charges 
moving through an inductor overshoot and 
charge the capacitor in a reverse manner. 
Note that the coil is necessary because the 
coil allows for the interplay of Ampère's Law 
and Faraday's Law. This is deep physics! 

The second part of the AM radio is the 
decoder of the amplitude modulation. The 
basic decoder is a diode. A diode is an 
electrical circuit element that lets current 
pass in only one direction. Fig. N-6 depicts 
a diode. Current passes through along the 
direction indicated by the triangle. Current 
trying to go the other way is blocked (right 
diagram in Fig. N-6). 
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Fig. N-7 shows how a diode can be 
used as a decoder for amplitude 
modulation. The incoming wave is 
oscillating to and fro. It wants to quickly 
push current into the diode and then pull 
current back in the opposite direction. The 
diode passes the "to" part and blocks the 
"fro." Current can only pass through a diode 
in one direction. Therefore, the output is 
just the top part of the input wave, that part 
representing pushing current into the diode. 
The part representing the pulling of current 
back (below the horizontal axis) is blocked. 

Since the carrier wavelength is so short 
(ripples) compared to the modulation of the 
amplitude (long wavy contour of amplitude), 
we sketch the output with these ripples 
merged. The result is the wavy contour of 
the amplitude. But do you remember why 
the carrier wavelength is so short and the 
modulation wavelength long? 

The carrier wave is a radio wave. For an 
AM radio station, a typical frequency is 
1310 kHz (WISE). This is 1.3 MHz, i.e., 
about 1 million times a second. The 
amplitude varies at an audio frequency. 

Take a sine wave of 100 Hz (a bass tone). 
That  is only 1 hundred times a second. 
Let's compare 100 with 1,000,000. Well, 
one million is 10,000 times more! That 
means the radio carrier wave wiggles back 
and forth 10,000 times before the amplitude 
undergoes one crest and trough! So our 
picture at the left in Fig. N-7 is exaggerated. 
Fig. N-7 shows about 16 ripples for our 
carrier wave as it goes through about one 
cycle and a half of amplitude variation. 
There should be thousands of ripples 
instead. 

The output wave is a result of the 
current that went through the diode in the 
correct direction. This is the upper part of 
the input wave. We can consider the output 
as bursts of current since the carrier waves 
(ripples) are closely packed (thousands) 
and all the current now is in the same 
direction. These bursts occur at the 
modulator frequency. This is our sound 
wave, i.e., the wave at 100 Hz. We have 
decoded (demodulated) the AM radio 
signal. We send this to an amplifier and 
then to a speaker to hear it. 
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Now we are ready to put all of this 
together: the tuner, the demodulator, the 
amplifier, and the speaker. The result is Fig. 
N-8, one big impressive diagram. Focus 
your attention on each component. These 
have already been discussed. If you are 
confused, localize the difficulty. Then 
review that section in the text in order to 
understand that particular part. Note that 
the amplifier circuit includes a variable 
resistor so you can control the volume of 
the output signal. The capacitor likewise 
has a variable control. You also know the 
inside structure of a speaker from an earlier 
chapter. So you really understand quite a 
bit about the circuit in Fig. N-8. The ground 
wire (see Fig. N-5) is not shown in Fig. N-8. 
Sketch it in. 

In the old days (the 1950s) it was 
common to buy a tuner, consisting of the 
tuner section and the demodulator. You 
would really be buying two circuits since 
your tuner would be able to pick up AM and 
FM radio waves. This consisted of one of 

your source components. Remember, the 
source component is stage one in sound 
reproduction. The amplifier is stage two. 
That would be your second component. 
Then you would buy speakers for the third 
stage. 

Manufacturers began combining the 
tuners with the amplifiers. These combo 
units are called receivers. Today, it is very 
common to buy a receiver. You get the 
radio and amplifier. This  assumes the 
higher-end product where components are 
specialized. Of course, you can buy a radio 
which includes everything, tuner, amplifier, 
and speaker(s). The author had a 6-
transistor pocket AM radio as a kid in 1963, 
complete with everything. The 6 transistors 
allowed for stages of amplification. The little 
radio used a 9-volt battery and could pick 
up Houston or Cincinnati from Philadelphia 
at night as AM radio waves bounced off the 
upper atmosphere (the ionosphere, which is 
higher at night). 
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Oscillators (Optional Section) 
 

Oscillator circuits are important for both 
radio frequencies and audio frequencies. 
An oscillator is used to produce the carrier 
waves in radio broadcasting. Oscillators are 
also used at audio frequencies to produce 
tones in music synthesizers. In the spirit of 
this text, the simplest possible oscillator 
circuit is given in Fig. N-9. Try to get an 
overall understanding for what the circuit 
does. Shift your eyes back and forth 
between the diagrams below. The current 
changes direction. The bulbs take turns 
going on and off. Only one is on at a time. 

The battery for the circuit is not shown 
directly. The plus and minus (ground) 
symbols indicate where to connect to the 
battery terminals. In the left diagram, the 

bottom capacitor is charging. The current 
going through the left bulb is too weak to 
light it up. The top capacitor is discharging, 
"sucking" current from the left transistor 
(pulling the "trap door" the wrong way a 
little). The left transistor is off. When the 
lower capacitor is fully charged, the reverse 
(right diagram) takes place. The left bulb 
goes on; the right bulb goes off. This circuit 
is called the astable multivibrator. We can 
replace the bulbs with resistors. Then tap 
off one of these resistors and we have our 
oscillator. The particular resistor-capacitor 
combination chosen for the charging 
circuits determines the frequency of the 
oscillator. 
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Digital Electronics 
 

In digital electronics, the voltage can be in 
any of two states: on or off. We will 
consider 1 volt for on and 0 volts for off or 
simply 1 and 0. Digital electronics is the 
foundation of the digital computer. The 
computer only knows 1 or 0; however, 
zillions of these give the computer the 
ability to do anything imaginable. Below we 
introduce the logic of using 1s and 0s. 
 
NOT (INVERTER) 
 
The first example of a digital-logic 
component is the NOT or Inverter. Have 
you ever changed your mind about 
something or said to a friend “You look 
good. NOT!” You negate or invert your 
comment. We change Yes to No or vice 
versa. See Table N-10a. 
 
Table N-0a. Inverter Logic  
 

Before After 

No Yes 

Yes No 

 
We will take 1 = Yes and 0 = No. You have 
some position on an issue, but after some 
reflection, you change your mind. Then the 
table is given as below. It is called a Truth 
Table. It lists all the cases. We refer to 
"Before" as the "Input" or "In" for short and 
"After" as the "Output" or simply "Out." 
Then we label “In” as A and “Out” as Y. 
 
Table N-0b. Truth Table for Inverter Logic  
 

A Y 

0 1 

1 0 

 
We would also like to have a visual 
representation of this logic in symbolic form. 
We are led us to our first digital-electronics 
symbol, also called a Gate. 

Fig N-10. Inverter Gate Symbol 
 

 
AND 
 
Consider two qualities you must have in 
your date; otherwise, you do not date the 
person. Perhaps, you insist on a date that is 
attractive to you in some way and one that 
has polite manners. This is an example of 
an AND condition. We summarize this logic 
in the following truth table. 
 
Table N-1a. AND Logic 
 

Attractive in 
Some Way 

Polite 
Manners 

Decision to 
Date 

No No No 

No Yes No 

Yes No No 

Yes Yes Yes 

 
We generalize this logic by letting A = 
"Attractive in Some Way" and B = "Polite 
Manners." Then we take 1 = True and 0 = 
False. The Decision is the Output or Out. 
 
Table N-1b. Truth Table for AND Logic 
 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 
The AND Gate symbol is given below. 
 
Fig. N-11. AND Gate 
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OR 
 
Consider two qualities, where only one is 
necessary for your decision to be true. 
Perhaps you are at your grandmom's house 
and she offers you lunch. Choice A = 
sandwich and Choice B = soup. But 
Grandmom says you can have both if you 
want. Then, the condition of eating lunch is 
satisfied by eating the sandwich, having the 
soup, or accepting both. 
 
Table N-2a. OR Logic 
 

Eat 
Sandwich? 

Have 
Soup? 

Did You Have 
Lunch? 

No No No 

No Yes Yes 

Yes No Yes 

Yes Yes Yes 

 
The corresponding generalized truth table 
is below. 
 
Table N-2. Truth Table for OR Logic 
 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 
The OR Gate symbol is in Fig. N-12. 
 
Fig. N-12. OR Gate 
 

 
XOR 
 
Now comes the "Exclusive OR." Grandmom 
says you can only have one for lunch: soup 
or sandwich. There is just not enough food 
to go around for everyone. In this case, the 
logic is summarized in Table N-3. 
 

 
Table N-3. Truth Table for XOR Logic 
 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 
The XOR Gate is below. Remember the 
XOR by thinking both choices are 
"excluded: you can have one or the other, 
but not both. 
 
Fig. N-13. XOR Gate 
 

 
 
Can you think of other scenarios for the 
XOR? 
 
NAND 
 
Consider the NAND as the negation of the 
AND. You just flip the answers of the AND 
to their opposites. See Table N-4a. 
 
Table N-4a. Truth Table for NAND Logic 
 

A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 
Below is another way of looking at your 
date requirements (see Table N-4b). 
 
Table N-4b. NAND Logic 
 

Attractive in 
Some Way 

Polite 
Manners 

Decision to 
Stay Home 

No No Yes 

No Yes Yes 

Yes No Yes 

Yes Yes No 
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We can write the negative of the AND 
output with the inverter. See Fig. N14a. 
 
Fig. N-14a. Constructing NAND Logic 
 

 
 
The abbreviated form for Fig. N-14a is Fig. 
N-14b. 
 
Fig. N-14b. NAND Gate 
 

 
 
NOR 
 
Let's return to our visit to Grandmom's for 
lunch where she serves soup and 
sandwich. Suppose we ask the question 
"Did you fast at Grandmom's Luncheon?" 
The answers to this question are listed in 
Table N-5a. 
 
Table N-5a. NOR Logic 
 

Eat 
Sandwich? 

Have 
Soup? 

Did You 
Fast? 

No No Yes 

No Yes No 

Yes No No 

Yes Yes No 

 
The general truth table is Table N-5. 
 
Table N-5. Truth Table for NOR Logic 
 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

 
This table is the inverted version of the OR. 
Compare the output Y columns. You find 

that the NOR has the opposites compared 
to OR. We illustrate this in Fig. N-15a. 
 
Fig. N-15a. Constructing NOR Logic 
 

 
 
The abbreviated form for Fig. N-15a is Fig. 
N-15b. 
 
Fig. N-15b. NOR Gate 
 

 
 
You just place a little "bubble" on the end of 
the OR. Sometimes, NAND and NOR are 
referred to as a bubbled AND and bubbled 
OR respectively. 
 
XNOR 
 
Let's flip the outputs for the XOR. We then 
get the truth table in Table N-6. 
 
Table N-6. Truth Table for XNOR Logic 
 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

 
Can you think of an example where this 
logic would apply? You can have nothing or 
both. It's an all or nothing deal! How about 
maintaining balance on a plank where A = 
"Hold a Weight in Outstretched Left Arm" 
and B = "Hold a Weight in Outstretched 
Right Arm." When are you balanced? 
 
My students taught me this next example. 
Let A = 1 mean A is in love with B and let B 
= 1 indicate that B loves A. Then the 
acceptable scenarios are the Platonic 
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relation A = B = 0 or the love relation A = B 
= 1.  The unrequited love cases have Y = 0. 
These relationships are undesirable. 
 
You might ask why we don't write this one 
as NXOR with the N out if front? Well, we 
just don't. It would be too hard to pronounce 
it that way. 
The corresponding digital circuit symbols 
are shown in Fig. N-16a and Fig. N-16b. 
 
Fig. N-16a. XNOR Logic 
 

 
 
Fig N-16b. XNOR Gate 
 

 
 
Check out the super summary below of all 
the gates (Fig. 17).

Fig. 17. Summary of Digital Logic Gates 
 

 
 

 
 

--- End of Chapter N --- 
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O. Signal Processing 
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The author's father once told the author 
around the late 1950s that no tape or 
recording could be better than the original. 
Something is lost in the recording. Nothing 
is perfect. There is no such thing as perfect 
high-fidelity reproduction. However, the 
author's father did not live to see the 1980s 
and beyond, where signal processing 
challenges this assertion. Here is a specific 
example. Suppose the original lacks reverb 
and is too weak in the bass. Then we 
correct these deficiencies in the processing 
stage before making the master. The 
recording is enhanced! You process the 
signal at home when you play around with 
bass and treble controls. If you have an 
equalizer (to be discussed), you process 
your signal even more. 

Philosophically, the original is not 
reproduced exactly. However, we can get 

"garbage" along with the good stuff. If we 
can eliminate some of the "garbage" during 
the intermediate processing stage, then can 
we say that the final product is better? The 
debate over whether a recording is "better" 
than the original may remind you about our 
earlier discussion concerning the existence 
of sound when a tree falls in a forest. 

But suppose the source is a digital 
synthesizer or computer. The information is 
encoded as 1s and 0s on a diskette. If we 
copy the diskette, the copy is indeed an 
exact reproduction of the original! And 
suppose a digital recording of an artist who 
hits 5 wrong notes is made and then the 
mistakes are corrected during the digital-
processing stage? The author is sure that 
his dad did not have these tricks in mind 
when he made his statement during the 
early days of stereo and tape recording. 

 
 
 
 
Filters 
 

One of the essential features of signal 
processing is the use of filters. Filters can 
reduce frequencies that are not as 
important as others. An active filter boosts 
frequencies transmitted by combining a 
filter with a dedicated amplifier for the filter. 
A filter without combined amplifier 
assistance is called a passive filter. 

Fig. O-1 illustrates an ideal filter that 
filters out high frequencies beyond a certain 
point. The graph at the right gives the 
percentage of the amplitude that gets 
transmitted for each frequency. Real filters 
do not cut off so abruptly. 
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We send in sine waves of different 
frequencies and see how much of the 
original wave comes out. We find that 100% 
of the wave gets through if its frequency is 
low. If the frequency is higher than a certain 
frequency, we get nothing (0% transmitted). 
The filter is ideal. Since actual filters are not 
"cliffs" that drop off so perfectly, we would 
find that some intermediate sine waves get 
partially transmitted. However, when we get 
to high enough frequencies, they would not 
get through at all. 

Fig. O-2 presents us with a specific ideal 
filter (labeled with numbers) that transmits 
low frequencies. We say the filter is a low-
pass filter because it "passes" low 

frequencies. Note that sine waves less than 
275 Hz get transmitted and sine waves 
beyond 275 Hz cannot pass through the 
filter. This boundary value of 275 Hz is 
called the cutoff frequency. Sine waves with 
frequencies beyond 275 Hz get "cut off." 
Fig. O-2 analyzes what happens to an 
incoming 50-Hz ramp wave. Note that the 
filter rule applies to sine waves. So we need 
to decompose the ramp wave into sine 
waves for analysis (lower left diagram). The 
first harmonic is 50 Hz, the second 100 Hz, 
and so on. The relative amplitudes we know 
from our earlier chapter on Fourier analysis. 
All harmonics below 275 Hz pass through 
the filter (see lower right diagram). 
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Fig. O-3 illustrates an ideal high-pass 
filter. This filter passes high frequencies 
instead of low frequencies as we saw 

earlier. Once again, we send in sine waves 
to determine the transmission rule for the 
filter. 

 
 

 
 
 
Fig. O-4 gives a specific example of an 
ideal high-pass filter using our ramp wave 

again. This time, the higher harmonics of 
the ramp wave pass through. 
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Fig. O-5 illustrates an ideal bandpass 
filter. This filter passes middle frequencies. 

We have a low cutoff and a high cutoff. 

 
 

 
 

Fig. O-6 gives a specific filter. It is 
convenient to refer to the bandpass filter by 
its central frequency and then give the 
width of the filter (the bandwidth). The filter 

in Fig. O-6 is centered on 275 Hz and it has 
a 200-Hz bandwidth (175 to 375). It passes 
frequencies within this band. 
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A simple filter can be made with one 
resistor and one capacitor (RC circuit). To 
understand why, we review the concept of 
charging a capacitor. In Fig. O-7 we charge 
a capacitor two ways. In the left case, 
electrons (negative) gather on the bottom 
plate of the capacitor as they try to get to 
the positive side. The absence of electrons 

at the top makes the upper plate positive. 
The battery is reversed in the right case so 
the charge on the capacitor is reversed. A 
key idea is that it takes time to charge the 
capacitor in either case because of the 
resistor. Now imagine flipping the battery 
orientation back and forth. This is basically 
what the oscillator does in Fig. O-8. 
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Carefully study the comments in Fig. O-
8. From these, we see that the low-
frequency oscillations are directed to the 
capacitor, while the high-frequency 
oscillations are picked up at the resistor. 
The RC circuit splits the frequencies. By 
choosing specific numerical values for the 
resistance and the capacitor, the frequency 
where the division occurs can be chosen. 

In a two-speaker unit, this simple RC 
circuit can be used to direct low frequencies 
to the larger bass speaker and send the 
high frequencies to the smaller speaker. 
This circuit is called a crossover circuit. The 
low frequencies "cross over" to the bass 
speaker, called a woofer. Remember this 
by thinking that "woof-woof" is a low-
frequency sound. The woofer is large and 

can support longer wavelengths. The high 
frequencies "cross over" to the smaller 
speaker, which is called a tweeter. 
Remember this by thinking that "tweet-
tweet" is a high-frequency sound. The 
tweeter better supports short wavelengths. 
The size of a vibrating system is related to 
the wavelength.  

Long strings produce bass, short ones 
high pitches. Similarly, large speaker 
membranes can support long wavelengths 
very well. Small speakers handle the short-
wavelength high tones better. Fig. O-9 
illustrates a crossover network which routes 
the low and high frequencies to the 
appropriate speakers. Compare the lower 
diagram in Fig. O-9 with Fig. O-8. 
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We are now ready to give RC circuit 
diagrams for the low-pass and high-pass 
filters. Our crossover network can serve as 
a guide. Fig. O-10, reproduces our 
crossover network. To make a low-pass 
filter, focus on the lower section with the 
capacitor. Throw out the wire at the upper 
right of the resistor. Then bend the resistor 
down to the left and straighten out the wire 

to its left. The result is the low-pass filter in 
Fig. O-11. For the high-pass filter, discard 
the wire to the lower right of the capacitor. 
Bend the capacitor up and straighten out 
the wire to its left. Then flip the whole thing 
from top to bottom to obtain the circuit in 
Fig. O-11. For alternating signals, it doesn't 
matter that the circuit is flipped from top to 
bottom. 
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We can obtain a bandpass filter by 
combining a low-pass filter with a high-pass 

filter provided that there is common overlap 
between the two. See Figs. O-12 and O-13. 
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Equalizers 
 

Equalizers are filter circuits that enable 
us to achieve a more "equal" sound in our 
homes or elsewhere. The equalizer can 
help to correct for deficiencies in the 
original sound or correct for less-than-ideal 
room acoustics in our homes or cars. The 
simplest filter circuits that offer some control 
are the bass and treble controls. The bass 
control enables us to modify the lower-
frequency half of the audio spectrum while 
the treble control allows us to adjust the 
higher-frequency half. 

A bass control and treble control are 
found in Fig. O-14. The same input audio 
signal is sent through each of these filters. 
The output of each filter is sent to an 

amplifier to boost the filtered output. This 
makes the filter an active filter. The RC-
circuit alone is a passive filter, one that 
filters without any subsequent amplification 
as part of the filtering process. Active filters 
amplify the filtered output as this is more 
desirable. It gives us control of the volume 
(loudness). 

The amplifier unit has a control that 
adjusts the volume overall. Amplifiers 
usually have bass and treble controls. 
These respectively provide control over the 
lower and higher frequency regions of the 
spectrum. We can boost the bass or treble 
independently. 
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The bass and treble controls let us 
adjust the lower and upper parts of the 
audio spectrum. Think of the range of audio 
frequencies split into two parts, the lower 
from 20 - 500 Hz, and the upper from 500 - 
20,000 Hz. Now break the audio spectrum 
into many small bandwidths and let an 

active bandpass filter control each section. 
We then have far more control of the 
sound. An active bandpass filter is given in 
Fig. O-15. Note that a power source 
(battery) is indicated by the "+" symbol and 
ground. 

 
 

 
 
 

An equalizer is an audio component that 
gives control over more than two regions of 
the spectrum. Active bandpass filters are 
employed to boost specific frequency 
bands. A seven-band equalizer is illustrated 
in Fig. O-16. The audio spectrum is broken 
up into 7 regions. A better equalizer is one 
that breaks the spectrum into 12 regions or 
more. Note how the central frequency for 

each region progresses by doubling the 
previous frequency. We can adjust the 
amplified levels of each of these 
bandwidths by sliding levers up and down. 
Adjustments can be different for left and 
right channels. Specific settings depend on 
the music played, room acoustics, and our 
personal preferences. Some equalizers 
include a reverb control. 
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Dolby 
 

We consider a special kind of signal 
processing now, one aimed mainly at 
reducing noise on playing tapes. Noise is 
heard on playing a blank tape. The noise is 
particularly dominant above 5 kHz. This is 
due to room temperature, which gives 
energy to the magnetic dipoles ("baby 
magnets") on the tape. They do not align 
correctly due to this energy. 
 

 
 

Fig. O-17 indicates the amplitude of 
noise on playback. Noise is the term used 
when virtually all frequencies are present. 
Make a "shhh" sound. This is noise. A 
release of steam is another example. In Fig. 
O-17 we find some presence of all 
frequencies. However, there is a greater 
amount for frequencies over 5 kHz. Due to 
the larger amount of high frequencies, the 
tape noise sounds more like a "hiss." In 
fact, it is called tape hiss. The dipoles do 
not truly get randomized when we erase the 
tape. Similarly, they do not align 100% 
correctly when we record. 

You can cool the system since thermal 
agitation due to heat is the culprit. But you 
probably do not want to get into cryogenics. 
Temperatures have to get really low. Dolby 
thought of a very simple way to approach 
the problem in the 1960s. The first method, 
called Dolby-A, was developed for 

professional use. A commercial version for 
the average consumer, Dolby-B, became 
widely available in the 1970s. The basic 
idea is to simply use an active filter to boost 
the high frequencies when you are 
recording, then filter them on playback. 
Remember, hiss is relevant only on 
playback. You can't tape hiss. So boosting 
on taping just raises the level of the music 
at high frequencies. Then on playback, use 
a filter that reverses your boost at high 
frequencies to bring the music back to 
where it should be. 

The key here is that you are lowering all 
high frequencies on playback. This includes 
the playback hiss. The high-frequency 
noise is lowered along with the taped high 
pitches on playback. The high pitches move 
down to levels where they should be and 
the hiss moves down also. The result is 
less hiss. 

The Dolby processing circuit for 
playback matches in reverse what the 
recording circuit does. You boost high 
frequency on taping and then you lower 
high frequency on playback. In order to use 
Dolby during recording, you must tape with 
Dolby activated on your tape recorder. 
There is a switch to set Dolby to on. Then 
you must play back the tape with Dolby on. 

Playback with Dolby on activates the 
playback circuit which applies the proper 
correction for the high frequencies. Leave 
the Dolby switch to the on position and 
automatically the right Dolby processing 
circuit is used. Some people like playing 
Dolby tapes with Dolby off. You then have 
the hiss but the high frequencies are 
enhanced from the original taping. The 
enhancement helps mask the hiss (cover it 
up). However, you are then hearing the 
high frequencies louder than that intended 
by the musicians. 
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Fig. O-18 puts into graphical form many 
of things we have been discussing. Dolby 
boosts high frequency on recording and 
compensates for this on playback. Note 

how the music and noise get equalized in 
the final diagram which indicates what we 
hear. 

 
 

 
 

In the diagram immediately above at the 
left, the tape was made with Dolby but is 
incorrectly being played back without the 
Dolby playback filter. High frequencies were 
taped higher so they are louder on playback 

without the Dolby filter. Note that noise now 
creeps in during the playback, especially 
over 5 kHz (the high end). With proper 
playback (diagram to the right), the hiss is 
lowered. 
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There are a few Dolby Noise Reduction 
Systems. The common commercial form of 
Dolby is Dolby B. Dolby A is a more 
elaborate form, used in professional 
recording. In Dolby B, the high-frequency 
end above 5 kHz is enhanced ten-fold. On 
playback, the high frequencies are 
suppressed ten-fold to compensate. This 
takes the noise down to one-tenth its usual 
value. We refer to such a drop as 10 
decibels (10 dB). 

Dolby proposed in 1983 using two Dolby 
B systems back to back to get a hundred-
fold suppression of noise. On the decibel 
scale which we will learn about later, a 
hundred-fold drop is a 20 dB decrease. 

Back in the old days when such 
sophisticated processing circuits didn't 
exist, faster tape speeds had to be used. 
Cassettes play at 1 and 7/8 ips (inches per 
second). There is much hiss at this speed. 
Tape decks in the 1950s typically had the 
higher speeds: 3 and 3/4 ips (twice the 
cassette speed) and 7 and 1/2 ips (four 
times the cassette speed). Playing tape 
hiss twice as fast doubles the frequency 

(pushes it up an octave). So 5 kHz gets 
pushed to 10 kHz by doubling the speed. 
Double again and you get 20 kHz. Fine 
recordings could be made in the early days 
with tape speeds at 7 and 1/2 ips. However, 
you need much tape, a big reel compared 
to a small cassette. 

If you suggested taping music at 
cassette speed in 1960, people would think 
you were joking. One would only record 
speech at such a low speed. In fact, the 
professionals used 15 ips for higher-quality 
musical recordings. However, 25 years 
later, the improvements in signal 
processing made it possible to have 
excellent recordings at cassette speeds. 
You need little tape because it moves 
across the tape head so slowly. Now, the 
Rachmaninoff Third Piano Concerto (40 
minutes) needs 400 ft instead of 1600 ft of 
tape (at the 7.5 ips we discussed earlier). 
Therefore, the cassette can be small. 
However, cassettes are no longer as 
popular as they once were due to compact 
discs. 

 
 
 
The dbx Compander 
 

Tape is not able to handle the range of 
loudness levels we find in real life. From an 
extremely soft violin playing solo (barely 
audible) to the blare of the full orchestra, 
the decibel change is about 100 dB. A tape 
can't record this difference. The tape just 
gets saturated. Tapes can successfully 
record a range of 50 dB. The decibel scale 
is tricky. This doesn't mean half the 
orchestra. Think of a range of 50 dB as 
going from a whisper to a busy street. 

There is an ingenious way to capture a 
sound as quiet as a drop of a pin and also 

the full orchestra. A processing circuit 
compresses the 100 dB range to 50 dB as 
the sound is recorded on the tape. The tape 
can faithfully store the compressed range of 
50 dB. The various loudness levels are 
"pushed together" for recording. Then on 
playback, another processing circuit 
expands the signal from the tape. Fig. O-19 
illustrates the idea. The original sound is 
compressed and the compressed version is 
recorded. The recording is expanded on 
playback to recover the full range of the 
original sound. 
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The system described in Fig. O-19 is 
called the dbx system. It does wonders for 
curing tape hiss. The tape hiss appears at 
the "whisper level" before expansion. When 
tape hiss appears on a blank tape without 
dbx or Dolby, you hear it like a whisper at 

normal volume. Expansion takes the 
"whisper" down to the level of a "drop of a 
pin." The hiss is essentially gone! Can you 
hear the drop of a pin with almost any other 
sound going on? 

 
 

 
 
 

Like Dolby, dbx requires the dbx switch 
to be on during recording and during 
playback. It is interesting to take a regular 
recording without dbx and try playing it back 
with dbx. The soft sounds are made too soft 
and the loud sounds too loud. 

When the music goes from soft to loud, 
this change is expanded by the dbx 
processing circuit. It sounds as if the music 
is moving quickly right at you due to the 
sudden increase in sound. Then the 
reverse is perceived when the music drops. 

It appears as if the source of the music 
quickly retreats to a great distance. 

Finally, Fig. O-20 summarizes most of 
the sound components we have covered in 
this text. Connect the output of the 
microphone schematic to the input of the 
amplifier circuit. Then connect the amplifier 
output to the speaker. Filter abbreviations 
are used: LP for low-pass, BP for 
bandpass, and HP for high-pass. Refer to 
the appropriate places in the text for 
detailed drawings and explanations. 
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--- End of Chapter O --- 
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P. Moog Synthesizer I 
 

The music synthesizer was invented in 
the early 1960s by Robert Moog. Moog 
came to live in Leicester, near Asheville, in 
1978 (the same year the author started 
teaching at UNCA). Although, there were 
examples of electronic music before 1960, 
the key discovery of Moog was voltage 
control. Moog used voltage to control sound 
characteristics. Consider loudness. You can 
turn a volume control up with your hand. 
This may take a half of a second. However, 
if the volume is turned up electronically, it 
can be up in a thousandth of a second. The 
result is a plucking sound. The use of 
electronic modules dedicated to different 
tasks along with voltage control brought 

about the music-synthesizer revolution of 
the recent generation. 

We take a modular approach in covering 
the synthesizer. Each section introduces a 
new module. In this text, symbols are taken 
from standard electrical engineering 
convention. As each new module is 
introduced, we combine it with the other 
modules covered before it. In this way, the 
architecture of the synthesizer unfolds 
before us in an elegant and satisfying 
manner. Discussion focuses on the early 
basic modular synthesizer, where you have 
to patch all the connections yourself. This 
provides us with an excellent foundation. 

 
 
Voltage-Controlled Oscillator (VCO) 
 

An oscillator produces a basic waveform 
that can later be modified by other modules. 
Five fundamental waveforms produced by 
electronic circuits are given in Fig. P-1. We 

have encountered them before. These 
waveforms range from simple sounds to 
rich ones. 
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The circuit symbol for an oscillator is a 

circle. We use the circle in this text to 
represent the VCO (see Fig. P-2). Another 
convention in this text is to let audio signals 
travel from left to right and control signals 
enter the modules they control from below 
the module. In Fig. P-2, the voltage entering 
from below determines the frequency of the 
audio signal. The voltage controls the 
oscillator (VCO). For example, the control 
voltage usually ranges from 0 to 10 volts. 
Low-frequency audio signals with 
frequencies like 60 Hz may require 1 volt, 
while a 16 kHz-tone may need 9 volts. 

The audio signal must be sent to a 
standard amplifier/speaker unit to be heard. 
This last step is omitted in our synthesizer 
diagrams. It is assumed that this final 
connection is provided. Note the simplicity 
in function of the VCO. Its task is very 
specialized and simple. 

You can assume that the choice of 
different waveforms are made by a switch. 
In the early modules you actually insert a 
wire, called a patch, into the desired jack on 
the VCO. If you are communicating by a 

synthesizer "formula" for a friend to 
reproduce your sound, you can include the 
waveform instructions on the diagram. You 
may simply sketch the waveform inside the 
circle. You can do this underneath the 
letters "VCO" or sketch it in place of the 
letters. The circle indicates oscillator and 
the waveform inscription inside the circle 
reinforces the idea that the circle is an 
oscillator. 

The modular diagram can serve as a 
way to communicate to others interesting 
sounds you have synthesized. The 
complete diagram or recipe is also called a 
patch. Today, with so many preset patches, 
we do not have much need for recipes. A 
modern synthesizer often has over 100 
preset sounds called voices, more than 
enough for the average user. Many users 
do not want to "discover" or "invent" their 
own sounds, but rather prefer to use those 
offered by the manufacturer. Different 
makes of synthesizers vary in how much 
the user can do in the way of making new 
voices. 
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Keyboard (KBD) 
 
   The keyboard (see Fig. P-3) is the device 
that usually controls the oscillator. 
However, it can be a guitar or other 
instrument. Due to the popularity of the 
keyboard, many musicians who play other 
instruments have some knowledge of the 

keyboard. The piano has always been a 
fundamental instrument for musicians as it 
gives an easy visual representation of 
harmony, it offers accompaniment 
capability for singers, and it is readily 
available. 

 
 
Fig. P-3. Keyboard. 
 

 
 
 

The symbol for the keyboard is given in 
Fig. P-4. We abbreviate the names for all 
modules, usually with three letters. A 
rectangle is the symbol we choose for a 
control module. When a key is pressed, two 
things happen. First, the control voltage 
assumes a voltage value depending on 
which key is pressed. This voltage enables 
the VCO to sound the right pitch. The 
control voltage continues after the key is 

released. This feature is called sample and 
hold. Remember that the task assigned for 
each module is kept as simple as possible. 

Second, the trigger voltage is activated 
when a key is pressed. It is deactivated 
when the key is released. We will see later 
how to use this. Think of it as a binary on-
off or "yes-no" voltage ("yes" if any key is 
held down, "no" if all keys are up). 
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Fig. P-5 illustrates the keyboard (KBD) 
working together with the voltage-controlled 
oscillator (VCO). The keyboard control 
voltage tells the oscillator which frequency it 
should oscillate at. The waveform is chosen 
manually by you. You flip a switch at the 
VCO or plug the audio cable into the 
desired opening on the VCO for the 
waveform of your choice. The trigger 
voltage is not used in Fig. P-5. The 
arrangement in Fig. P-5 produces a tone 
when a note on the keyboard is pressed. 
When the key is released, the tone is still 
made by the VCO due to the sample-and-
hold feature. 

Note that you can only use one note at a 
time. You can't play two notes at once. The 
reason is simple. There is only one 
oscillator, i.e., one VCO. Additional 
oscillators are needed if you want to play 
more than one note simultaneously. We will 
stick with one VCO in our diagrams so that 
we can master all the fundamental features 
of the modular synthesizer. 

Playing more than one note 
simultaneously is called polyphony. A 
polyphonic synthesizer has several 

oscillators in order to do this. The common 
synthesizer today offers at least 8-note 
polyphony. This is usually enough for a 
performer. With two hands you can hit 10 
notes at one time and exceed this number 
by letting the thumb handle 2 notes. But this 
is not typical. For synthesizers with 
computer capability (MIDI), the voices are 
independent and the computer can play 
different instrument voices at the same 
time. 

Composers may need more 
independent voices such as 16. Many MIDI 
synthesizers are 28-note polyphonic. The 
popular Roland XP-50 workstation has 64-
voice polyphony. However, some sounds 
require the synthesizer to use more than 
one of its voices to produce it. For all 
practical purposes, this reduces the actual 
note polyphony. You need to consult the 
manual to see how many voices are 
needed to produce a sound of your choice. 
This can amount to a significant reduction 
on some synthesizers. Check the manual 
and listen to the sounds before purchasing 
an expensive unit. 
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Voltage-Controlled Amplifier (VCA) 
 

 The voltage-controlled amplifier is an 
amplifier that is controlled by voltage. 
Instead of turning it on with your hands, you 
can connect a 1.5-volt battery to it. More 
voltage means more amplification. Two 
batteries in series (one on top of the other) 
supplies 3 volts and the sound is louder. 
But of course, we don't use batteries. There 
is another module (to be taken up in the 
next section) that is used to control the 
VCA. Remember that each module 
specializes in a small task. 

Fig. P-6 illustrates our symbol for the 
VCA. We choose a triangle since the 
triangle is the standard symbol for an 
amplifier in electrical engineering. An audio 
signal is sent into the amplifier and a 
modified signal is sent out. The amplitude 
of the signal is modified by the input control 
voltage. Remember our convention that 
audio signals progress from left to right and 
control signals are drawn controlling from 
below. The control voltage has values in the 

range of 0 to 10 volts like the VCO. Control 
signals can be steady or changing. The 
audio signals leaving the VCO are always 
periodic waveforms with frequencies in the 
range of human hearing. The VCO 
electrical oscillations are  therefore always 
alternating in current (AC). 

The voltage amplitudes for the AC audio 
signals are low, in the millivolt (mV) range 
like typical sources. The VCA controls the 
amplitude to achieve many interesting 
electronic effects rather than boosting it in 
the usual fashion to drive a speaker. You 
still need the regular amplifier. Once again, 
we do not show the last two stages in 
sound systems: the amplifier (2nd stage) 
and the speaker stage (3rd stage). All of 
our synthesizer diagrams depict the source 
stage (1st stage). Other sources we have 
studied include the microphone, CD player, 
and radio. Your standard stereo amplifier 
(receiver) has auxiliary inputs to handle an 
additional source such as a synthesizer. 
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Fig. P-7 illustrates the simplest way to 
combine the VCO, KBD, and VCA. The 
keyboard controls the oscillator as before. 
However, now we take the trigger voltage 
and apply it to the amplifier. Remember that 
the trigger voltage is either on or off, 
depending on whether a key is held down 
or not. The signal is the same for all keys. 
Pressing any key results in the same "on-
voltage" in the trigger line. 

Pressing a key then does two things. 
The keyboard sends a control voltage to the 
VCO to tell it which frequency to oscillate 
at. This voltage depends on the key. A key 
to the left on the keyboard sends a low 
voltage to the oscillator and the oscillator 
produces a bass tone.  Keys to the right on 
the keyboard send higher voltages, 
resulting in treble tones. The keyboard 
sends out a second control voltage, this 
one to the VCA. This voltage is the same 
for any key. When a key is pressed, the 

trigger voltage informs the VCA, which then 
amplifies the incoming signal. When the key 
is released, the amplifier cuts off the 
incoming signal. 

When the amplifier cuts the incoming 
signal off from going to the output, the input 
signal is still there trying to get through. 
This is a result of the sample-and-hold 
feature of the keyboard. It is important 
because the VCA may want to do more 
things to the incoming wave. In our simple 
case it cannot. But if we have a more 
elaborate control voltage entering the VCA 
than the simple trigger voltage, we obtain 
more interesting sound effects. We take this 
up in the next section. For now, our control 
is a simple on-off. We hear an abrupt start 
when a key is pressed. The tone is steady 
when the key is held down. When released, 
the tone ceases just as abruptly as it 
started. 
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Envelope Generator (ADSR) 
 

The control offered by the trigger 
voltage is not very satisfactory. The trigger 
voltage is not designed to feed directly into 
the VCA. Its purpose is to activate another 
module, the envelope generator, which in 
turn controls the VCA in a much more 
sophisticated manner. The trigger voltage 
turns the VCA on abruptly when a key is 
pressed (see previous section). 

The turn-on phase of a sound is called 
the attack phase. When a key is released, 
the trigger turns the VCA off abruptly. This 
last phase of the sound is called the release 
phase. If the key is held down, there is an 
additional phase to the sound, the sustain 

phase. For quickly pressing and releasing a 
key, the trigger control on the VCA provides 
us with a simple analysis for the sound: an 
abrupt or short attack and an abrupt or 
short release phase. When you strike a bell, 
the attack phase is abrupt but the release 
phase of the sound is long. 

Table P-1 lists four sounds depending 
on whether the attack and release is either 
abrupt or gradual. There are four possible 
basic combinations. We are not considering 
a sustain phase at this time. The sound 
takes an amount of time (attack) to reach a 
maximum level, then immediately begins to 
die away (release). 
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Fig. P-8 illustrates four phases for a 
sound. The sound begins during the attack 
phase. Then there is a decay to the sustain 
level. The sustain level continues until the 
key is released, at which time the release 
phase begins. This four-part method is very 
powerful in shaping a multitude of sounds. 
The wave being shaped in Fig. P-8 is a 

square wave. Fig. P-9 illustrates the four 
phases of the envelope or outline. The 
amplitude shaping here is a form of 
amplitude change or modulation, however, 
the change doesn't keep repeating. The 
square wave can be considered to be the 
carrier wave. The modulator wave shape is 
the envelope contour (Fig. P-9). 
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Fig. P-10 at the right gives the symbol 
for the envelope generator. It is a controller 
so a rectangle is used. The ADSR is 
controlled by the trigger, and the ADSR in 
turn controls the VCA. You press a key and 
the trigger "fires up." This tells the ADSR to 
go through a preset program. It immediately 
turns on the VCA for the duration that's set 
previously for the attack phase. Think of 4 
knobs on the ADSR unit, one for each 
phase. 

An attack setting of 1 ms gives a 
percussive start, while a setting of 1 s is a 
long beginning, like slowly playing a 
harmonica. The decay phase follows for the 
time set for it. This phase brings the sound 
level down to the preset sustain value. The 
ADSR continues sending out the sustain 
voltage for the sustain phase until you 
release the key. Upon release of the key, 
the trigger voltage goes off. The ADSR 
begins the release phase, turning the VCA 
off according to another preset value. 

   The settings (preset) for the attack, 
decay, and release are time values, usually 
between 1 ms and 1 s. The sustain setting 
is a voltage value. The time for this phase is 

determined by how long a key is held down. 
Fig. P-11 illustrates the VCO, KBD, VCA, 
and ADSR working together. A variety of 
musical sounds can now be synthesized by 
shaping the available waveforms. 
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Low-Frequency Control Oscillator 
 

The ADSR shapes the carrier waveform 
once for each key press. We mentioned 
that this change is, in a sense, a 
modulation. You might say that the ADSR 
performs an aperiodic modulation, while the 
more usual type of modulation is periodic 
modulation. We have discussed the three 
basic types of modulation: amplitude 
modulation, frequency modulation, and 

timbral modulation. These types of 
modulation can be achieved electronically. 
A special controller is dedicated to 
performing periodic changes on waveforms. 
This unit operates at the low frequencies, 
as we expect, for the usual modulation 
discussed in a previous chapter (0 - 25 Hz).  
See Fig. P-12. 

 
 

 
 
 

In Fig. P-13 below, the LFO is used to 
obtain the two familiar types of modulation, 
AM and FM. The LFO simply controls the 
appropriate module in each case. The LFO 

has settings for your modulating frequency 
and the sweep range. For example, you 
can sweep the VCO over small ranges for 
vibrato or large ones for siren effects. 
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Note that two signals go into the VCO in 
our example for vibrato. The VCO can 
accommodate these signals. The voltages 
are added together. Then the sum controls 
the VCO. The control voltage from the 
keyboard sets the base frequency or tone. 
Perhaps this voltage is 3 V. The voltage 
from the LFO then provides an additional 
fluctuating voltage to it. For a vibrato, this 
extra periodic voltage may vary a little, e.g., 
fluctuating between 0 and 0.1 V. The tone 
raises its pitch a little and then lowers it 
back and so on. The rate at which this 
occurs is determined by the frequency 
setting on the LFO. For sweeping siren 

sounds, the LFO voltage may vary from 0 
all the way up to 1 V and back down again 
periodically. 

More practical arrangements for 
synthesizing a tremolo or vibrato are built 
from the basic arrangement of the VCO, 
KBD, VCA, and ADSR working together. 
Then the LFO is brought in to provide the 
appropriate modulation. These patches or 
arrangements are shown in Figs. P-14a and 
P-14b. The LFO generates its own 
frequency. Nothing ever is sent to the LFO. 
We use the rectangle for the LFO because 
it produces a control voltage rather than an 
audio signal  like the VCO. 
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An Exercise 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

--- End of Chapter P --- 
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Q. Moog Synthesizer II 
 

In the previous chapter we introduced 
five synthesizer modules: the voltage-
controlled oscillator (VCO), the keyboard 
(KBD), the voltage-controlled amplifier 
(VCA), the envelope generator (ADSR), 
and the low-frequency oscillator (LFO). In 
this chapter we introduce two more: the 
noise generator (N), and the voltage-
controlled filter (VCF). These seven 
modules are the basic modules of the 
modular synthesizer. 
 
Noise Generator (N) 
 

The engineering definition of noise is a 
sound that has a mixture of all frequencies. 
When there is fairly equally-perceived 
distribution of all frequencies, we have 
white noise. This name comes from an 
analogy with light. Newton discovered that 
white light consists of all the colors in the 
visible spectrum. If you shine white light 
through a prism, the light breaks up into the 
spectrum of colors from violet to red. Violet 
has the shortest wavelength and highest 
frequency. The violet light is nearly twice 
the frequency of red light. 

We see about an octave in color. All the 
colors within this octave mixed together 
appear white to our eyes. With sound, we 
hear many octaves. The piano alone has 7 
octaves. We can hear a few additional 
octaves beyond the piano. The frequency 
range for hearing is often reported as 20 to 
20,000 Hz. However, most people lose it 
somewhere between 10,000 Hz and 20,000 
Hz. A fairly equal representation of sound 
from 100 Hz to 10,000 Hz is taken to be 
white noise. 

An excellent example of white noise is 
the roar of the ocean. The turbulence of the 
water at the beach or shore is so varied that 
frequencies of sound across the audio 
spectrum are produced. Some claim that 
putting a seashell to your ear reproduces 
the ocean sound, having captured it 
mysteriously in some way. You do hear 
sound when you place a seashell to your 
ear, and it is white noise. The white noise is 
not due to the ocean though; it is noise 
resulting from random movement of air 
molecules due to temperature. You can get 
a similar effect by holding a glass to your 
ear or cupping your hands over an ear. 

Steam is another good example of 
noise. You need to be careful if sounds of 
steam get loud because all frequencies are 
represented. This has the potential to 
damage your hearing. Technicians working 
near steam turbines in power plants wear 
ear protection. Another example of white 
noise is the noise a fan makes. The yells 
and cheers of a baseball or football game 
heard from afar approximate white noise. 
Far away you get a better mix of the sound. 
Can you imitate the distant sound of cheers 
by making sounds with your mouth? 

We are more sensitive to higher pitches 
than low ones. The noise that sounds fairly 
uniform is actually somewhat lacking in 
lower frequencies. If we really have equal 
amounts (by the reading of a meter) for all 
frequencies, the noise sounds a little 
deeper. Engineers use the term pink noise 
for such noise since it appears to have a 
greater presence of low frequencies. Going 
back to the analogy with light, white light 
with a presence of more low-frequency red 
is pink. 
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Noise is illustrated in Fig. Q-1. This 
figure represents a snapshot of noise as it 
appears on an oscilloscope. The mixture of 
so many wavelengths produces a chaotic 
pattern that constantly shifts on the 
oscilloscope. The many frequencies 
present in noise are evident by the many 
different wavelengths superimposed. The 

low frequencies have long wavelengths, 
while high frequencies have short 
wavelengths. The combined waveform is 
aperiodic. The wave patterns do not repeat. 
Therefore, there is no defined pitch as we 
find in periodic waves. Fig. Q-2 below 
illustrates some examples of noise. 
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Noise can be made electronically by 
forcing a current into a transistor the wrong 
way. This causes microscopic havoc. If you 
overdo it, you destroy the transistor. But in 
smaller amounts, electronic noise is 

produced. This is all we want for the noise 
source. Our noise generator does just this 
and nothing more. The symbol for the noise 
generator is given in Fig. Q-3 below. 

 
 

 
 
 

The circle is used for the noise 
generator because it is a module that 
generates audio signals. The VCO also 
generates audio signals. However, there 
are some differences. The noise generator 
has no input control signal. It always 
produces noise. The reason we need to 
control the VCO is that the VCO produces 
one frequency at a time. We need to tell the 
VCO which particular frequency to produce 
by playing a key of our choice on the 
keyboard. Since the noise source N 
produces all frequencies in a random 
mixture, the noise generator needs no 
instructions. 

You might wonder why the noise source 
is always on. But we want this. Recall that 
the VCO always sends out whatever the 
last key instructs it to do. This is sample 
and hold. Likewise the noise source keeps 
sending out white noise. Each module is 
asked to do very little. We need all the 
modules working together to produce the 
final desired outcome. 

See Fig. Q-4 for a simple example. It 
doesn't matter which key is pressed. The 

effect is the same. Each key produces the 
same trigger. 

Quick attacks and gradual releases can 
synthesize explosions. Explosions have 
many random frequencies (noise). Gradual 
attacks and abrupt releases synthesize 
sucking on a straw (random turbulent 
motion of the liquid produces noise). It's 
best to just press and quickly release the 
key for these. If a key is held down, steady-
state noise is maintained. 
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Voltage-Controlled Filter (VCF) 
 

The last module of the basic seven units 
that comprise the modular synthesizer is 
the voltage-controlled filter. The filter allows 
us to modify the waveform, shape the 
timbre. The filter can alter the Fourier 
spectra of our basic periodic waveforms 
that originate in the VCO. The filter can also 
modify the sound from the noise generator. 
We can filter out high frequencies and 
approximate pink noise. 

When we employ light with colored 
filters, we get different colors. The color we 
see is the color transmitted by the filter. A 
blue filter transmits blue light. We might say 
that white noise going through an electronic 
filter produces "colored noise." The three 
basic filter types are reviewed in Fig. Q-5 
below. 

 
 

 
 
 

The filter graphs above give the 
transmission percentage for a sine wave at 
each frequency entering the filter. Periodic 
complex waves must be decomposed into 

their Fourier spectra in order to analyze 
which harmonics can pass through. The 
symbol for the VCF is given in Fig. Q-6. 
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The symbol for the voltage-controlled 
filter (VCF) is a triangle. The triangle is the 
symbol used for the amplifier, which 
modifies the audio signal's amplitude 
overall. The filter works on individual 
spectral components. It modifies the 
amplitudes of the partials that make up a 
periodic waveform. It modifies noise, 
filtering out some sine-wave frequency 
components, passing others. Therefore, the 
triangle is the logical choice. Think of the 
triangle symbol as one that represents a 
device that accepts an audio signal and 
modifies it. The amplifier and filter do this. 
Active filter circuits have amplifiers 
incorporated in them. We can consider the 
VCA and VCF as members in the same 
family, the family of audio-modifier 
modules. 

 The voltage-controlled signal that 
enters the filter symbol from below fixes the 
cutoff frequency if the filter is low-pass (LP) 
or high-pass (HP). The control determines 
the center frequency for bandpass filters. 
Now we can obtain "colored noise." We 
choose a bandpass filter and use the 
keyboard to pick where the central 
frequency should be. See Fig. Q-7. If the 

central frequency is low, the filter lets a 
band or window of low frequencies pass. If 
a middle key is played, the noise band near 
the middle of the audio spectrum is 
highlighted. For the keys near the top of the 
keyboard, the noise band is centered on 
high frequencies, giving more of a "hiss." 

 The noise generator in Fig. Q-7 sends 
out "white noise" to the VCF. The VCF 
filters out frequency components of the 
noise, producing an output of "colored 
noise." Since we are using a bandpass 
filter, you may carefully pencil in BP to the 
lower left of the letters VCF inside the filter 
triangle. This reminds us to use the correct 
filter when we look up our "recipe" for 
interesting colored-noise effects in the 
future, i.e., Fig. Q-7. When a key is 
released, the control voltage corresponding 
to the key just released is still going to the 
VCF. This is due to the sample-and-hold 
characteristic of the KBD. Since the noise 
keeps sending out an audio signal, you 
keep hearing the filtered noise. You can 
use the VCA and ADSR, as we will show, to 
control the shape or envelope of the sound. 
Different settings on the ADSR then provide 
for a rich variety of noise effects. 
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A special kind of bandpass filter can 
pass only a very narrow band of 
frequencies. This filter is called a resonance 
filter. It is essentially the resonance-tuner 
circuit we encountered in the AM radio; 
however, now we are dealing with audio 
frequencies. Our first encounter with 
resonance involved mechanical resonance 
very early in this text. Fig. Q-8 presents us 
with the familiar resonance curve again. But 
this time, two graphs with different features 
are given. Both are in the family of 
resonances. Specific choices for circuit 
elements can give the usual tall and narrow 
resonance-response curve or a short and 
wide one. 

In radio electronics, a tuner with a tall 
and narrow response band is said to have 

much selectivity. The resonance circuit is 
very selective in its response. If the 
incoming frequency is not within a very 
narrow band of frequencies, there is very 
little or no response. This is desired since 
neighboring stations aren't picked up at the 
same time. Such a tuner is also more 
sensitive since the response at resonance 
is so great. This is another desired feature 
in tuner resonance circuits. 

Resonance filters that are tall and 
narrow are said to have a high Q-value 
(Quality-value or Quality-factor). They are 
very selective in the frequencies that they 
pass. They also amplify these special 
frequencies very much. So the filters can be 
said to be sensitive to the frequencies near 
the resonance frequency. 

 
 

 
 
 

A resonance filter with a high Q-value 
passes a narrow band of frequencies. The 
emphasis of such a narrow band of 
frequencies produces a dull tone in the 
noise. When you whistle, especially not so 
good, there is a lot of noise mixed in with 
the whistling tone. A group of such whistlers 

is even a better example. We can use a 
narrow bandwidth filter to synthesize a 
group of whistlers. Fig. Q-9 gives the 
arrangement. We need the VCA and ADSR 
now in order to cut the sound off as we 
release the keys.  In this way, we can play 
a tune. 
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The key on the keyboard determines the 
central frequency of the bandpass filter in 
Fig. Q-9. If the bandpass filter is a 
resonance filter with a high Q-value, the 
filter can narrow the broadband white noise 
down to noise in the neighborhood of the 
resonance frequency of the filter. A tone 
with surrounding noise is produced. We 

approximate a group of whistlers, where 
noise comes from the air rushing in the 
mouth along with the whistling tone. We 
can synthesize a group whistling the tune 
The Bridge on the River Kwai. The VCA 
and ADSR supply the amplitude shaping of 
each whistled note. 

 
 

 
 
 

The arrangement in Fig. Q-10 below 
produces howling wind.  It does not need a 
VCA and ADSR since the sound may 
continue on its own in this case. The KBD 
determines the central frequency for the 

bandwidth and the LFO shifts the entire 
bandwidth up and down, giving the howling-
wind effect. Playing different keys gives 
variety to the sound. 

 

 



Copyright © 2012 Prof. Ruiz, UNCA Q-8 

The most basic set of synthesizer 
modules for producing a musical tone 
consists of the following five modules: the 
VCO, KBD, VCA, ADSR, and VCF. The 
other two modules we studied, the LFO and 
N are used for special effects. The LFO can 
add tremolo or vibrato effects. Noise can be 

employed to synthesize explosions. The 
five modules needed for producing musical 
tones are depicted in Fig. Q-11 with their 
proper relationships to each other. Fig. Q-
11 serves as an excellent review of modular 
components. It also introduces one new 
concept, filter tracking. 

 
 

 
 
 

First we introduced the VCO and KBD. 
The VCO produces the audio signal with a 
frequency determined by the KBD. Think of 
these two modules working together as a 
pair. They address one of the three basic 
characteristics of a periodic tone, the 
frequency. The other two fundamental 
characteristics are the amplitude and 
timbre. The amplitude shaping is 
accomplished by the VCA and ADSR. 

Consider these as a pair working together. 
The amplitude shaping gives us the playing 
of a single note. Otherwise, the sound 
would continue indefinitely. The shaping of 
the third main aspect of a periodic tone, the 
timbre, is accomplished by the filter. 
However, it needs a control partner too. It 
uses the KBD. The KBD controls both the 
VCO and VCF. 

 
 



Copyright © 2012 Prof. Ruiz, UNCA Q-9 

There is good reason for the KBD to 
control both the VCO and VCF. If the cutoff 
frequency for the filter were to be fixed by 
some other control source, then some 
tones might be totally cut out. As you 
played up the scale, a low-pass filter could 
cut your high frequencies off. You want the 
filter cutoff frequency to follow you. 

A specific example will illustrate this 
important point. Consider using the pulse 
train as the oscillator waveform. This is set 
manually before playing the synthesizer. 
The pulse train has a Fourier spectrum 
where each harmonic is present with equal 
amplitude. Consider also choosing a low-
pass filter and an appropriate fixed-control 
voltage (from a power supply) so that the 
filter lets through the first three harmonics 
of the pulse train when we play Do. We 
obtain a unique sound, a pulse train with 
only the first three harmonics. Now if we 
start playing up the scale (Do, Re, Mi, etc.) 
the frequency of our pulse train gets higher 
and higher. It quickly gets beyond the low-
pass filter cutoff and nothing comes through 
at the higher end of the scale. Playing up 
the scale and having your sound disappear 
is not good. 

Now if the filter cutoff can move up the 
scale with us, then the filter can keep 
passing the lower harmonics. As the 
fundamental gets higher in frequency going 
up the scale, so does the cutoff frequency 
of the filter. To enable the filter cutoff to 
move with the note we play, we simply tap 
off the KBD control voltage and send it to 
the filter in addition to sending it to the 
VCO. The filter can now track our base 

frequency. With filter tracking, we preserve 
the filter's ability to modify our pulse train 
over the entire keyboard. 

Even with filter tracking, the filter will not 
have exactly the same effect on our pulse 
train everywhere along the scale. Maybe an 
additional harmonic gets through here and 
there. However, the basic modification of 
passing lower harmonics is preserved. 
Timbres on real instruments change 
somewhat at low and high ends of the 
musical scale anyway. So we should not be 
too hard on our filter if it also varies 
somewhat in how it shapes the spectrum 
for different notes. 

Note how the arrangement in Fig. Q-11 
has three main vertical sections. The first, 
consisting of the VCO and KBD, focuses on 
frequency. The second region, consisting of 
the VCF with filter tracking made possible 
by voltage control from the KBD, is 
concerned with timbre. The third region, 
consisting of the VCA and ADSR, attends 
to the amplitude. The modification of the 
three essential features of periodic tones is 
accomplished by voltage control in each 
case. Note the first two letters "VC" for 
three of the modules. The trio of voltage-
controlled modules reflects the fundamental 
nature of periodic-wave characteristics: 
frequency, timbre, and amplitude. To 
control these by voltage is the landmark 
discovery of the music synthesizer. Finally, 
see Figs. Q-12a and Q-12b, which 
introduce the LFO in order to give the 
synthesized musical tones a tremolo or 
vibrato effect. 
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--- End of Chapter Q --- 
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R. The Ear 

 
We turn now to the study of the human 

ear. In this chapter we consider the 
biological components of the ear. We learn 
how they work in order to detect sound 

waves. Then, in following chapters, we look 
at the psychology of perception and the 
medical area of hearing loss, audiology. 

 
Structure of the Ear 

 
Fig. R-1 below illustrates the human ear. 

The ear is divided into three parts or 
sections. These are the outer ear, middle 
ear, and inner ear. The sounds enter the 

ear in a gas medium. We have acoustic 
waves in air. The waves travel to the 
eardrum. The eardrum is the boundary 
between the outer and middle ear. 

 

 
 
 
 

The eardrum is a membrane that 
vibrates in response to the incoming sound 
waves. It is analogous to the membrane in 
a microphone that oscillates in step with the 
sound it picks up. The eardrum transmits 
the vibrations to the middle ear. The middle 
ear consists of three tiny bones: the 
hammer, anvil, and stirrup. The vibrating 
eardrum vibrates the hammer. The motions 
of the hammer are transmitted to the anvil, 
and then to the stirrup. In this sequence, 

the bones act as a lever system. The 
vibrations are amplified in the process and 
directed to the oval window. The 
amplification occurs since the applied force 
at the oval window acts over a smaller area 
when compared to the area of the eardrum, 
the location of the input force. Muscles 
dampen the bones if necessary. However, 
sudden loud sounds may cause damage to 
the middle ear. 
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The eustachian tube connects the 
middle-ear section to the region below the 
back of your mouth. This is important in 
order to equalize pressure. When there is 
no sound, the pressure on either side of the 
eardrum should be the same. When sound 
compressions and rarefactions enter, the 
eardrum vibrates about its equilibrium 
position. If you go to a higher altitude, the 
air pressure is less. The eardrum wants to 
push outward due to the lower pressure 
outside and greater pressure inside. 
However, if the outside pressure can be 
communicated to the middle ear behind the 
eardrum, a new equilibrium pressure can 
be established. 

The reverse occurs when you come 
down from a higher altitude to a lower one. 
The increased pressure at lower altitude 
pushes in on the eardrum since now the 
average pressure behind the ear is less. 
When the greater outside pressure is 
communicated to the middle ear via the 
eustachian tube, the equilibrium pressure is 
raised. 

The adjustments in pressure must not 
occur instantly, otherwise, the eardrum 
wouldn't work at all. You want the rapid 
changes in pressure of a sound wave to 
vibrate the eardrum. It does this because 
the pressure changes rapidly on each side 
as the sound vibrates the eardrum. We only 
want to make a correction to the pressure 
behind the eardrum when the overall 
average pressure, i.e., equilibrium 
pressure, changes. Therefore, the response 
time for the pressure adjustment is greater. 
It may take a few seconds or longer. When 
the adjustment occurs, you might hear a 
"pop." You might describe it as your ears 
"popping." 

If you are "stuffed up" due a cold or 
allergy, your ears may have trouble 
adjusting for equilibrium pressure changes. 
The build up of pressure on either side of 
the ear can be quite painful, especially on 
airplanes. The ear is challenged on 
airplanes. Although attempts are made to 
keep cabin pressure constant, there are 
typically changes in the pressure when 
raising to higher altitudes and coming 
down. Smaller low-flying planes do not 
maintain cabin pressure as well as larger 
commercial jets. Some people suggest 
swallowing to help open passageways in 
the eustachian tube. Others recommend 
chewing gum. 

The author's father-in-law (the Colonel) 
was a flight instructor during World War II. 
His method calls for you to cover your nose 
openings with your thumb and forefinger, 
close your mouth, and try to blow outward 
through your covered nose. The internal 
build-up of pressure helps to open the 
pathway in the eustachian tube. 

The stirrup is attached to a structure 
called the oval window, the boundary 
between the middle and inner ear. The 
stirrup vibrates the oval window. On the 
other side of the oval window is the inner 
ear with fluid. The vibrations now travel as 
conduction in a liquid. The pressure waves 
in the coiled cochlea (KOE-klee-uh) result 
in detection of sound. The inner ear also 
houses our sense of balance. However, the 
balance sense is independent of hearing. 
The balance structure contains semicircular 
canals (not shown in Fig. R-1) with another 
fluid which responds to our orientation. 
Here, fluid actually shifts around, 
stimulating hair cells.  In the cochlea, 
pressure waves in the fluid stimulate hair 
cells. 
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The Inner Ear 

 
To acquire an understanding of the 

cochlea of the inner ear, we will enlarge it in 
stages. However, first we unwrap it. The 
unwound cochlea is about 3.5 cm in length 
(one inch and a half). Magnifying the 
unwrapped cochlea gives the result in Fig. 
R-2 below. Sound enters at the oval 
window. The oval window transmits the 
sound waves into the upper cochlear 
chamber called the scala vestibuli. 

The oval window is an oval opening 
covered with a membrane on each side. It 
is exaggerated (too large) in Fig. R-2. The 
window itself does not take up the entire 
end of the upper chamber. Sound travels 
down the scala vestibuli, crosses and is 
detected along the basilar membrane (the 
place depending on the frequency), and 
remnant sound waves travel through the 
scala tympani, the lower chamber to the 
round window. 

 
 

 
 
 

The round window is a small round 
opening covered with a membrane on each 
side. It is located at the end of the path that 
the sound takes. It gives way to the 
pressure vibrations, preventing strong 
reflections that would occur if the end of the 
path were a solid wall. The size of the 
round window is exaggerated in Figs. R-1 
and R-2. It does not take up the entire end 
of the lower chamber. 

The basilar membrane lies between the 
upper and lower chambers in Fig. R-2. The 
sound is detected here. The basilar 

membrane is stiff at the left end near the 
oval window. This causes high frequencies 
to be detected there. Stiff structures vibrate 
more quickly than supple ones. The right 
end of the basilar membrane is not as firm 
and responds more readily to low 
frequencies. The slight disturbance of 
specific regions of the basilar membrane 
detects the different frequencies. The 
basilar membrane connects to nerves along 
its length. A cross section of the unwound 
cochlea found in Fig. R-3 shows this bundle 
of nerves called the auditory nerve. 
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Fig. R-3 is a cross section of a cochlea 
that has been unwrapped. Think of the 
cochlea now as a hot dog with threads 
coming out from the left middle side 
throughout its entire length. Then cut the 
hot dog in half and look at the end that is 
cut. This is what you are seeing in Fig. R-3. 
To get the original cochlea you need to put 

the other piece back and roll it up. In Fig, R-
3 you can look down the top and bottom 
chambers of the cochlea. The basilar 
membrane lies in the middle region. 
However, some structures in the middle 
have been omitted so far. To investigate 
further the structure of this central region of 
the cochlea, we magnify once again. 

 
 

 
 

The central region of the basilar 
membrane is blown up in Fig. R-4 below. 
The basilar membrane supports the organ 
of Corti (CORE-tee) which contains over 
20,000 hair cells. As one region of the 
basilar membrane responds to a specific 
frequency, those hair cells in the vicinity 
move as a result of the disturbance of the 
underlying section of the basilar membrane. 
The moving hair cells get "tickled" by the 
tectorial membrane. Each hair cell is 

connected to a nerve member of the 
auditory nerve. The stimulated hair cells 
send electrical impulses to the brain by way 
of the auditory nerve. The louder the sound, 
the greater the movement, and a more 
intense electrical signal is sent along the 
auditory nerve. The Reissner membrane is 
a protective covering. Note the neighboring 
scala vestibuli and scala tympani in Fig. R-
4. 
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The position of the stimulated hair cell 
along the basilar membrane determines the 
frequency perceived by the brain. 
Remember that the basilar membrane has 
various degrees of stiffness. Different 
sections of the basilar membrane move for 
different incoming frequencies. The stiffer 
parts near the oval window respond to 
higher frequencies while the more supple 
sections at the far end move under the 
influence of low frequencies. 

In order for the ear to be able to detect 
frequencies as low as 20 Hz and as high as 

20,000 Hz, the various frequencies 
detected are spaced in a special way. 
Imagine dividing the length of the basilar 
membrane into 10 equal steps. Figs. R-5a 
and R-5b illustrate two spacing rules. The 
spacing in Fig. R-5a is arithmetic or linear. 
You add the same amount every step of the 
way as you proceed from right to left. In Fig. 
R-5a we add 20 for each step. After 10 
steps, we have moved 200 units. Since we 
started with 20, the final value is 220. The 
range is not very great. 

 
 

 
 
   

On the other hand, the spacing in Fig. 
R-5b is nonlinear. Equal spacings do not 
correspond to equal increments. The 
particular nonlinear spacing in Fig. R-5b is 
geometric since every time you make a 
step, you multiply by a fixed number instead 
of adding a fixed amount. In Fig. R-5b, we 
multiply by 2 for every step, i.e., double 
each previous value. Let each vertical line 
in Fig. R-5b represent a bundle of hair cells 
on the organ of Corti. The many more hair 
cells that lie between these localized 
groups are omitted for ease of analysis. 

Then the numbers are the frequencies 
detected along the basilar membrane. 

The social scientist Malthus drew 
attention to the concepts of arithmetic and 
geometric rates in his analysis of population 
around 1800. He proposed that population 
growth is geometric but improvements in 
food supplies are arithmetic as time goes 
on. Consider a chess board as another 
example. If you put 1 penny on the first 
square, 2 on the second, 4 on the third, and 
so on, roughly how much money would you 
need for the 28th square? How much for 
the 38th square? 
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A slightly smaller range of frequencies 
to consider spans from 30 Hz to 16,000 Hz. 
This stays away from the extremes 20 Hz 
and 20,000 Hz. The lowest note on the 
piano is about 30 Hz, while the highest note 
is approximately 4,000 Hz or 4 kHz. 
Frequencies beyond 4 kHz sound real shrill. 
See Fig. R-6 below for frequencies listed 
from 30 Hz to 16 kHz. We double at each 

step as before. Note that when we double 
60, we write 125 instead of 120. We do this 
because doubling 125 gives the nice 
number 250, which we can double to get 
500. The spacing in Fig. R-6 represents the 
spacing of the frequencies as detected 
along the basilar membrane. Remember 
that the "k" is shorthand for 1000. 

 
 

 
 

Fig. R-7 illustrates the equalizer we 
encountered earlier. Compare the numbers 
on the equalizer with our new series of 
frequencies in the lower line in Fig. R-6. 
The seven-band equalizer offers 7 
frequency bands in which you can enhance 
the sound from your source. The equalizer 
can be considered as part of the 2nd stage 
in sound reproduction. 
 

   We learned about the functional similarity 
between the amplifier and filter. Both are 
modifiers. An active filter in an equalizer 
also incorporates an amplifier as part of the 
filter circuit itself. The center frequencies of 
the equalizer bandpass filters are arranged 
in jumps corresponding to the spacing of 
frequencies along the basilar membrane. 
The frequencies span the pitches on the 
piano except for the lowest octave. 

 
 

 
 
 
 

--- End of Chapter R --- 
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S. Perception 
 

This chapter builds on the biology of the 
previous chapter. The emphasis here is on 
perception. This topic falls in the area of 
perceptual psychology. The brain receives 
the information from the ear by way of the 
auditory nerve. The sense of sound is 

perceived by the brain. If we adhere to the 
strictest definition of sound, which includes 
external vibrations and internal perception, 
then there must be a brain for sound to 
exist. In this viewpoint, the very definition 
includes the experience of sound. 

 
The Place Theory of Hearing 
 

The place theory of hearing states that 
the place where hair cilia get stimulated 
along the basilar membrane determines the 
perceived frequency. This is supported by 
observation. However, this "place 
observation" cannot explain some 
phenomena. Playing a specific tone excites 
the hair cilia in the corresponding region 
along the basilar membrane. Playing the 
tone louder stimulates the hair cilia more 
and this is perceived as louder. 

However, experiments in the 1930s 
revealed that different pitches carefully 
matched for loudness were not perceived to 
be equally loud. In other words, amplitude 
doesn't solely determine loudness. Pitch 
influences loudness. We know this from 
experience since we find high-pitched tones 
loud and irritating. You might try to defend 
the place theory of hearing by saying that it 
is easier to stimulate the stiff region of the 
basilar membrane. Therefore, high-pitches 
will of course be perceived to be louder. But 
maybe this is not the correct analysis. 
Perhaps other factors and the brain play a 
role. 

There is another observation that 
presents difficulties if we try to explain 
everything by the place theory of hearing. 
Psychologists have found that we can 
perceive raises in pitch when tones are 
increased in loudness. We might defend the 
place theory of hearing by reasoning as 
follows. If you increase the loudness, the 
hair cilia shake so much that you get some 
neighbors shaking also. Since we assumed 
above that the stiffer end of the basilar 

membrane responds better, we expect to 
excite some neighbors at the higher-
frequency end more. This raises the tone. 
But is it enough? Wouldn't the original hair 
cilia be shaking more wildly and 
overshadow the higher pitch. These issues 
are being studied today. 

You get the point. We are in gray areas 
on some of these questions. So although 
the place theory of hearing is based on the 
observed spacing of frequency sensitivity 
along the basilar membrane, it does have 
limitations in explaining some perceptual 
phenomena. 

Don’t be discouraged by this. Compared 
to physics, psychology is really hard. The 
brain and ear are far more complex than 
compression waves traveling through an 
elastic medium such as a slinky or air. Also, 
physics has been around longer, since the 
1600s. Psychology as a separate discipline 
began more recently in the 1800s. We may 
have to wait centuries before understanding 
some perceptual subtleties really well. 

Let's focus on some simple aspects of 
the place theory of hearing that we know to 
be true. Various frequencies are detected 
along the basilar membrane. Every equal 
step along the basilar membrane 
(approaching the oval window) results in 
doubling the frequency. Therefore, each 
step corresponds to a pitch increase of an 
octave. We can count the steps to go from 
20 Hz to 20,000 Hz, doubling the frequency 
each time. We arrive at 10 steps or 
octaves.
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Frequencies along the basilar 
membrane are seen the Fig. S-1. Most 
people will have trouble hearing 10 octaves. 
If we use our more practical range of 30 Hz 
to 16,000 Hz, we obtain 9 octaves. Note 
that in either range we use, each doubling 
step is still an octave. We just start at a 

different frequency (30 Hz) and make 9 
steps instead of 10. But since you need all 
10 steps starting from 20 Hz for the entire 
3.5-cm length of the basilar membrane, we 
can say that each octave corresponds to 
1/10 this amount, which is 0.35 cm or 3.5 
mm. 

 

 
The Decibel Scale 
 

We saw how the place theory of hearing 
gives us a basic understanding of our 
perception of frequency. Frequency is one 
of the three fundamental characteristics of 
periodic waves. The other two are 
amplitude and timbre. The place theory of 
hearing also provides us with the essential 
mechanism for detecting amplitude. The 
hair cilia, responding at a particular place 
along the basilar membrane determined by 
the frequency, get stimulated more when 
the amplitude of the sound is increased. 
The greater stimulation of the hair cilia gets 
sent to the brain through the auditory nerve. 

The ear detects a very impressive range 
of frequencies, from 20 to 20,000 Hz (about 
10 octaves). Likewise, the ear detects an 
impressive range of amplitudes. We can 
hear the barely audible sound made as a 
pin drops onto a soft cushion. We can also 
hear the full blast of an orchestra. We have 
to be careful that we do not expose 
ourselves to sounds that are too loud. 
These can damage our ears. We will take 
that subject up more fully in our next 
chapter where we discuss hearing loss. 

The way the ear is able to detect so 
many levels of loudness is due to the fact 
that it is stubborn in responding to a new 
level of loudness. The new stimulus must 

be much greater than the previous one to 
hear an appreciable increase. We 
encountered a similar idea in frequency 
detection. To stimulate the next neighboring 
group of hair cilia (another 3.5 mm along 
the basilar membrane), we need to really 
turn up the frequency. We need to be in the 
next octave. See Fig. S-2 for another 
sketch of the frequencies along the basilar 
membrane. Every time we make a 3.5-mm 
step along the basilar membrane, the 
frequency response doubles. In this way, 
the basilar membrane can pack the 
tremendous response range of 10 octaves 
into a total length of only 3.5 cm. 

The secret in understanding the strategy 
at work along the basilar membrane is to 
realize that equal steps mean you multiply 
instead of adding. We studied this earlier 
with the small step size of 3.5 mm. Every 
small step of this size results in doubling. 
However, you can take bigger steps. See 
Fig. S-2 for a larger step size. The secret 
still applies, but now you multiply by a 
different number. This number is 10 for the 
larger step size in Fig. S-2. This "secret" 
when applied to the psychology of 
perception is known as Weber's (VAY-
ber's) Law. 
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The organism will not perceive an equal-
step jump in perception unless the original 
stimulus is multiplied. To get the ear to 
respond at equal small steps along the 
basilar membrane, you double the 
frequency at each step. To get the ear to 

respond to equal large steps along the 
basilar membrane, you multiply the 
frequency by 10 at each step. Note that 
three of the smaller steps in Fig. S-2 are 
necessary to make one larger step in Fig. 
S-2. 

 

 
 

Weber's Law is usually discussed within 
the context of loudness. The same idea 
applies. If you want roughly equally-
perceived jumps in loudness, you need to 
multiply how many sources of the sound 
you have at each step. In fact, Weber's Law 
applies in this approximate way to the 
stimulation of all five senses. Table S-1 lists 
the application of Weber's Law to the five 
senses. We employ in Table S-1 the two 
different step sizes used in Fig. S-2, i.e., 
multiplying by 2 and multiplying by 10. 

There is nothing "sacred" about 
choosing multiplying factors of 2 and 10 in 
Table S-1. Weber's Law applies to any 
number. It just means that the size of the 
perceived jump will be different. Remember 
that 3 of the small "doubling" steps equal 
one of the larger "tenfold-increasing" steps. 
Refer again to Fig. S-2 to impress this on 
your memory. This can be also be 
understood from observing that doubling 
three times (2 x 2 x 2 = 8) gives us 
approximately a tenfold increase. 
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The study of stimuli in terms of math 
and physics is the subfield of perceptual 
psychology called psychophysics. Fechner 
(FECK-ner), considered the founder of 
experimental psychology, came up with a 
mathematical formula that embodies 
Weber's Law. Fechner was a physicist and 
early psychologist. Weber and Fechner 
both worked in the 1800s during the birth of 
psychology as a discipline. Weber's Law (or 
Fechner's mathematical equivalent) is not 
an exact law; however, it is useful as a 
starting point in analyzing perception. 
Fechner's Law states that a response is 
proportional to the logarithm of the stimulus: 
R = k log S. What's this? Logarithms? Don't 
worry. You already understand the law if 
you understand Table S-1. The formula is 
just the mathematical way of writing the 
information found in the table. 

The area of perception is one of the 
most challenging applications of 
mathematics and physics. It is part of the 
subject of experimental psychology. We are 
trying to come up with ways, using 
numbers, to describe how one responds to 
a stimulus. The detection system offers 
important clues. Here is where biology and 
physics come into play. The stiffness of the 
basilar membrane and its vibrating 
response to incoming sound is a case in 
point. Getting a mathematical handle on the 
perception of stimuli is called scaling. Our 
task now is to scale the perception of 
loudness. We will present the historical 
scaling based on Fechner's Law (also 
Weber's Law). The result is the decibel 
scale we use today as a practical way to 
measure sound levels. We sidestep 
working explicitly with Fechner's scaling 
formula, just as we avoid detailed equations 
elsewhere in this text. However, it should 

be stressed that although mathematics is 
important, it's even more important to 
understand what's behind the mathematics. 
What follows is the essence of the historical 
scaling law for the stimulus-response of 
loudness. 

The sound-level scale is given in Table 
S-2. It extends the reasoning of Table S-1, 
where Weber's Law is applied to the five 
senses. In both tables, we consider 
dropping pins. The scale numbers are 
simply counting numbers for the large-sized 
steps that now continue on for 14 phases. 
Each perceived jump (step) signifies a 
tenfold increase in the actual number of 
pins that drop. The threshold of human 
hearing is taken to be the sound made by 
the drop of a pin on a soft cushion. Sound-
level meters are designed to get accurate 
measures of levels. The examples in Table 
S-2 are approximate. Note the fundamental 
feature of Weber's Law. The scale rating 
proceeds by equal jumps or increments 
while the actual number of sources (pins) 
for the stimuli goes up by a tenfold increase 
at each step. 

The unit for the scale numbers is the 
bel, named after Alexander Graham Bell. 
Bell invented the telephone (1876) and 
made contributions to the study of sound. 
His mother was deaf and so was his wife. 
The third column in Table S-2 gives the 
number of decibels. The metric prefix deci 
means one tenth. One tenth of a bel (0.1 
bel) is one decibel (1 dB). The decibel is a 
smaller unit so you need more of them to 
make up the larger bel. Compared to the 
reference drop of one pin, a decibel level of 
140 is letting 100 trillion pins fall an 
equivalent distance on the appropriate 
surface material. 
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The number of pins used to make the 
sound gives us the intensity from the point 
of view of physics, not perception. The 
perceptual scale is the compressed scale 
that goes from 0 to 14 bels or 0 to 140 dB. 
We can consider our engineering method of 
measurement as noting the number of pins 
we drop to make the sound. So we can 
consider the number of pins we drop as our 
intensity. The bel scale is the sound-level 
scale to approximate our perception of 
sound. It can quickly be obtained by 
counting how many zeros there are after 
the 1 in the number of pins dropped. 
Therefore, for 100 pins we have 2 (since 
there are 2 zeros after the 1); for 1000 pins 
we have 3, and so on. 

Finally, to get the decibel column, 
multiply by the number of bels by 10. This is 
the prescription given by Fechner's Law: R 
= k log S. You obtain the stimulus (S) - the 

number of pins you drop. The "log" is the 
instruction to count how many zeros are 
after the 1. Then you multiply by k, which is 
our multiplier 10. Engineers like to write Ir 

instead of S. Ir stands for relative intensity; 

we always compare to the drop of 1 pin. 

Also, the Greek letter β (beta) is used 
instead of R (R is used for resistance). We 

will use β to stand for the sound-level 
response in dB. Then, Fechner's Law for 

sound level can be written as β = 10 log Ir. 

Engineers get precise with the standard 
of intensity for the drop of one pin. Imagine 
a drop-of-the-pin sound that is sustained. 
The energy coming to the area of your 
eardrum each moment must be equivalent 
to one trillionth of the energy of a one-watt 
light bulb falling on an area of one-meter 
square. This is indeed a small amount of 
energy. The pin, the cushion, falling height, 
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and distance away all affect the sound 
level. See Fig. S-3 for a quick overview of 

approximate sound levels. 

 

 
 

Table S-3 relates sound levels to the 
language used by composers to indicate on 
the music score how loud music should be 
played. These are called dynamic 
markings. They instruct the performer how 
softly or loudly to play specific passages 
and notes. These instructions to performers 
are traditionally given in Italian. The decibel 
equivalents given in Table S-3 are 
approximate. Performers know that sound 

levels are especially subjective due to an 
interesting feature of our perceptual 
process. We perceive a loud sound to be 
extra loud if it is preceded by silence. So if 
you have a ff passage coming up, play 
extra softly a little before. Our perceptual 
dependency on what comes before the 
sound is just one of the subtleties that 
makes perception a challenging subject to 
study. 
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Table S-4 below gives two handy rules 
for determining sound levels when we 
increase the number of sources. You may 
recognize that these rules are the 
expressions of Weber's Law as applied to 
the decibel scale. Remember our steps 
along the basilar membrane. There, one 

large step (tenfold increase) was equal to 
about three smaller ones (twofold 
increases). Doubling the number of sources 
represents the smaller step size in loudness 
(add 3 dB), while increasing the number of 
sources by a factor of ten is our larger step 
size (add 10 dB). 

 

 
 

A working example of the rules found in 
Table S-4 is given below in Fig. S-4. We 
start with one washing machine at 70 dB. 
Of course we need to be at the right 
distance. Assume that we can have more 
machines at the appropriate distance. 
Every time you double the amount of 
machines, you add 3 dB. Every time you 
multiply the number of machines by 10, you 
add 10 dB. To get the level for 50 
machines, step from 1 machine (70 dB) to 
10 machines (80 dB), then to 100 machines 

(90 dB), and cut the final number of 
machines in half. You then subtract 3 dB 
instead of adding. With our two rules, you 
can determine so many cases. You can 
easily estimate the levels for other amounts 
in between. For example, 7 machines 
produces about 78 dB. Why would 5 
machines give 77 dB? Do not make the 
common careless mistake and state that 2 
machines would be 2 x 70 dB = 140 dB. 
Note that 100 machines produce only 90 
dB. 
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The study of how frequency relates to 
loudness was undertaken in the 1930s. The 
reference for the sound-level scale (dB) is a 
1000-Hz tone. Think of a precise 
experiment where we do not drop pins but 
use flutes that produce a barely audible 
1000-Hz tone at a given distance. Then, at 
the proper distance, 1 such flute gives 0 dB, 
10 flutes give 10 dB, 100 flutes give 20 dB, 
and so on. If we work with another 
frequency, subjects perceive a different 
"loudness spectrum." 

   So we modify our table from the very 
early chapter concerning the physical and 
perceptual characteristics of sound. This 

table is reproduced in Table S-5. However, 
we add a qualifier to emphasize that the 
correspondence is approximate. 
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Fletcher and Munson (1933) made a 
study of the perception of equal loudness 
and how the sensitivity of the ear varies 
across the frequency spectrum. They 
started with the sound-level scale which 
assumes a 1000-Hz tone. They then 
presented subjects with different pitches. 
Imagine replacing the 1000-Hz flute with 
one at 500 Hz. We then play one of these, 
then 10, then 100, and so one. Of course, 
in practice one uses a tone generator and 
controls the energy output to simulate the 
series of cases, 1, 10, 100, 1000, and so 
on. Fletcher and Munson found that their 
subjects perceived different loudness levels 
for the different frequencies played at the 
same level according to a scientific 
instrument. For example, if we employ the 
1000-Hz flutes, we get a threshold 
response when one such flute is played. 
Now if we switch to a 50-Hz instrument 
(bass tone), we need 10,000 instruments to 
just get the subject to hear anything. This is 
40 dB higher! We are less sensitive to bass 
tones than we are to 1000 Hz. 

The Fletcher-Munson experiment 
carefully starts with a set pitch. We push up 
the decibel level, monitoring it on a 

scientific instrument, until the subject hears 
something. This establishes the threshold 
for the pitch. We then draw a curve across 
the audio spectrum which represents 
thresholds (see the lowest curve in Fig. S-
5). 

Other equal loudness curves are 
determined using 1000 Hz as the reference. 
By definition, the perceiver is in agreement 
with the sound-level meter at 1000 Hz. This 
phase of the experiment begins with the 
1000-Hz reference tone along with the pitch 
other than 1000 Hz. The reference is set to 
a decibel level according to the sound-level 
meter. For example, the 1000-Hz tone 
might be set to 30 dB. Then, the other tone 
with a different frequency is presented to 
the hearer. The hearer adjusts its volume 
so that the different frequency matches the 
loudness of the fixed 30-dB reference of 
1000 Hz. Tones that sound the same in 
loudness, are found to have different 
decibel levels according to the meter. In our 
above example, 40 dB at 50 Hz sounds as 
loud as 0 dB at 1000 Hz. To avoid 
confusion, it is said that they have the same 
value in phons, the subjective scale. 
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Find any point along any curve in Fig. S-
5 as follows. First choose a specific curve, 
then a point along that curve. Suppose you 
choose the 30-phon curve. You then slide 
along this curve to any point. Consider 
stopping at the point to the left, 
corresponding to 50 Hz (horizontal) and 60 
dB (vertical). This point tells us that in order 
to hear a tone of 50 Hz at the same level as 
the reference 1000-Hz tone at 30 dB, we 
need to make the 50-Hz tone 60 dB. In 
other words, 50 Hz at 60 dB has the same 
loudness as 1000 Hz at 30 dB. Each is said 
to have 30 phons. Note that the dB-value 
and phon-value agree at the 1000-Hz 
reference for all levels of intensity. 

As we move to the outer limits of human 
hearing, the curves rise. Focus on the 
lowest curve, the threshold curve. This 
curve describes barely audible sounds. The 
threshold curve gets higher at each end of 
the spectrum. Note the enhanced sensitivity 
near 3000 Hz. Here all the curves dip down. 
The ear canal is like a small pipe and has a 
resonance frequency near 3000 Hz. The 
ear canal amplifies sound near 3000 Hz as 
a resonance effect. The threshold for low 
frequencies is high. This difficulty in hearing 
low bass tones is actually good. Otherwise, 
we would hear the low-frequency sounds 
made inside our bodies. Since the ear is not 
very sensitive in the low-frequency range, 
sound-level meters have a special 
weighting mode (A-weighted) that discounts 
lower frequencies. Meters also usually have 
fast and slow response modes, the slow 
response giving more or less an averaged 
sound level. 

  
Other Perceptual Phenomena 
 
1. Masking. 
 
   When more than one sound is perceived, 
the louder sounds are heard more easily. 
Therefore, it is possible for a loud source to 
overpower a soft one. This can happen to 
the point where we no longer hear the soft 
one. This is called masking. We all have 
experienced the trouble of hearing 

something soft because something else is 
louder and distracting. 

White noise can help mask sounds. 
White noise presents us with all 
frequencies. We have encountered such 
examples as the fan, sound of the ocean, 
and rain. Putting on a fan helps some 
people go to sleep due to the masking 
effect. Distracting sounds are covered up 
by the soothing even-distribution of all 
frequencies. 
 
2. Periodicity Pitch. 
 

Masking is an example where loud 
sounds prevent us from hearing other 
sounds. Here we see that certain sounds 
can cause us to hear other sounds not 
originally present in the source. The place 
theory of hearing cannot explain why we 
perceive tones that are not present in the 
sound waves. Consider sending a 200-Hz 
sine wave to the ear along with a 300-Hz 
tone. The brain perceives the 200-Hz and 
300-Hz tones. It recognizes that these two 
tones can be thought of as the second (H2) 
and third (Hz) harmonics relative a 100-Hz 
sine wave. The brain registers at a lower 
level of intensity the fundamental at 100 Hz 
(H1), the periodicity pitch. A frequency-
analysis of the incoming waves is done by 
the ear-brain system, establishing and 
perceiving the fundamental! 

We saw that each periodic tone can be 
represented by a Fourier spectrum of 
harmonics. Most of the time the 
fundamental is the strongest component. 
The ear-brain expects the fundamental to 
be there and puts it in if it's not. This 
explains why we hear bass better than we 
should from a small 2-inch speaker. The 
low fundamental tones are lost to some 
extent, but the ear-brain system supplies 
them. The ear-brain knows they should be 
there. 

Now consider a rephrase of our earlier 
question about a tree falling in a forest. Is 
"sound" present for a fundamental tone if it 
is heard but there is no source making that 
frequency? 
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A periodicity theory of hearing has been 
developed based on observations that we 
hear fundamental tones not present in the 
incoming sound. In such a theory, Fourier 
analysis of incoming waves are relevant. 
Both the place theory of hearing and the 
periodicity theory of hearing are important 
in providing for a more complete picture of 
hearing. 
 
3. Aural Harmonics 
 

Another fascinating case of hearing 
components of sound not present in the 

original sound is experiencing aural 
harmonics. A sine wave has one harmonic, 
the fundamental (H1). However, if you play 
it loud enough, the eardrum can't vibrate 
through the distance it needs to. You get 
clipping of the wave as the eardrum 
reaches its limits. The information sent to 
the middle and inner ear is now no longer a 
sine wave. Therefore, you perceive 
overtones (aural harmonics), frequency 
components not in the original sound 
entering the ear.  See Fig. S-6 

 
 

The amplitude of the sine wave is so 
great in Fig. S-6 that the eardrum cannot 
faithfully reproduce it. The wave gets 
distorted. If we turn up the volume too high, 
the system is not able to handle it. 
Distortion can occur in making tapes if we 
tape the source with the amplifier setting 
too high. The strength of the amplified 
sound is indicated in recording equipment 
by a sound-level display to guide us. 
Whenever an electronic component distorts 
the shape of a sine wave, harmonics of the 
sine wave appear. This is referred to as 
harmonic distortion. 
 
4. Combination Tones. 

 
Playing two very loud sine waves 

causes us to hear additional tones beyond 

those discussed above. We hear the 
original tones, the sum and difference tones 
at low levels, and possibly even more 
tones. For example, if we play a 500-Hz 
tone very loud with a 700-Hz tone, we hear 
1200-Hz (sum) and 200 Hz (difference). 
The lower tone may be difficult to hear due 
to our lack of sensitivity to low pitch. 

The resulting frequencies are the 
combination tones made by combining the 
original frequencies. Other combinations 
found by adding and subtracting various 
multiples of the original frequencies may 
also be heard. How can you use beats to 
determine if a 1200-Hz tone is heard when 
a 500-Hz tone is played loudly with a 700-
Hz tone? 
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5. Binaural Effects. 
 
Binaural effects are phenomena that 

result from our having two ears. Just as two 
eyes (binocular vision) give us an excellent 
sense of three dimensions, two ears 
provide us with a better three-dimensional 
sense of hearing. With two ears, we can 
more easily tell from which direction a 
sound comes. Sounds at our left do not 
reach the right ear as well. The brain 
constantly compares the sound level at 
each ear to give us a perception of our 
surroundings. For long-wavelength bass 
tones, the brain relies more on a 
comparison of phases. When a 
compression reaches the closer ear, there 
is a delay before the compression reaches 
the farther ear due to the extra distance. So 
different parts of the wave cycle reach each 
ear at any given time. 

The important role of the brain in 
processing signals from the auditory nerve 
is evident in the following experiment using 

two ears. Earphones are employed to send 
a different signal into each ear. When the 
different tones are close in frequency, we 
hear beats. Even when care is taken to play 
the tones softly to eliminate any bone 
conduction in the skull, beats are still 
perceived. The conclusion is that the beats 
occur in the brain. When we usually hear 
beats, the waves combine physically 
outside the ear. The pressure waves add. 
The result is a fluctuation in the sound wave 
itself. You can hear it with one ear. 

When the tones are separated, they 
cannot physically add together. Each tone 
enters a different ear. However, the 
combination of these signals from the 
auditory nerve of each ear to the brain is 
processed in the brain. The brain effectively 
combines the waves in a way similar to the 
physical addition of wave amplitudes. The 
beats experienced are perceptual or 
psychological rather than physical. Do they 
really exist? Is there sound if a tree ... ? 

 
 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

--- End of Chapter S --- 
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T. Audiology 
 

Our focus in this text started with 
physics. This led us into many engineering 
applications in electronics. After looking at 
the technological developments in sound 

reproduction and electronic synthesizers, 
we turned to biology. Then we examined 
the psychology of perception. This chapter 
takes us into an area related to medicine. 

 
 
Audiograms 
 

Audiograms are medical records of an 
ear's ability to hear sound. The study of 
hearing loss is called audiology. It is a fairly 
recent field of study. It originated after 
World War II to assess the hearing losses 
of war veterans. The government provides 
disability payments for veterans that suffer 
injuries, many of which severely curtail 
employment opportunities. The coordinated 
effort to study the science of hearing loss 

led to the use of the word audiology in 
1946. 

Table T-1 lists the ranges for human 
hearing in terms of sound level and pitch. 
As we have studied, these features rely 
mainly on the amplitude and frequency of 
the sound respectively. Since the timbre is 
a result of overtone frequencies, testing 
amplitude (sound level) and frequency for 
sine waves suffices. 

 
 

 
 
 

Quotations appear with 140 dB in Table 
T-1 because this limit is not relevant in 
testing. You are tested for the lower limit. If 
you can hear levels near 0 dB, you can 
hear louder sounds. With frequency, things 
are different. The different frequencies need 
to be tested. 

Hearing impairment can result from 
problems in each of the three regions of the 
ear. Problems in the outer and middle ear 
tend to affect all frequencies. There can be 
blockage in the ear canal or damage to the 
bones in the middle ear. Problems in the 
inner ear can be selective, effecting some 

frequencies and not others. Perhaps only 
one region along the basilar membrane is 
not functioning properly. One suffers loss in 
hearing those frequencies corresponding to 
the problem area. The result is that some 
frequencies are not heard unless they are 
loud. If an appreciable percentage of the 
basilar membrane is not working properly, 
sounds lose clarity. Doctors can remove 
obstructions such as wax in the outer ear. 
Operations can often repair the middle ear. 
However, difficulties in the inner ear are 
hard to correct. Hearing aids that amplify 
everything do not really help. 
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Data from testing frequency for hearing 
thresholds can be easily plotted on a two-
dimensional graph. One axis is chosen for 
frequency, the horizontal. The other axis, 
the vertical, is chosen for the sound level of 
the hearing threshold. See Fig. T-1 for a 
grid ready for data. The frequencies tested 
do not include the entire range of human 
hearing. The focus is on frequencies 
present in speech. Speech falls mostly 
between 250 Hz and 4000 Hz. The intent of 
hearing-loss assessment is to determine 
whether an individual can function in 
society without a "hearing challenge." 
Therefore typical testing is restricted to the 
frequency range 125 Hz to 8000 Hz (See 
Fig. T-1). 

The limits of the usual hearing test 
correspond to an extra octave on each side 
of the range for most speech. Hearing loss 
in this range can present one with 
difficulties in communication. The 
audiogram is a diagnostic record for this 
range. If you can pass the test everywhere 
up to 8000 Hz, you pass. Of course you 

may have a serious loss at 10,000 Hz and 
beyond. But for practical purposes you can 
understand speech and you are judged to 
be satisfactory. This was the government's 
original concern in measuring the hearing of 
veterans. If you are a veteran, the question 
is can you understand speech? 
Communication is crucial for employment. 
The government doesn't care if you can't 
fully appreciate the richness of the high 
notes in the Sibelius Violin Concerto 
because you miss out on some of the 
overtones. 

The audiogram is a card on which the 
response measurements are recorded in a 
grid similar to Fig. T-1. The frequencies 
jump by octaves. Pure tones (sine waves) 
are presented to the ear. The softest sound 
level heard at each of the main frequencies 
is noted. Since the ear is not uniformly 
sensitive to all frequencies, bass tones are 
boosted to compensate. Normal thresholds 
are then 0 dB for each of the tested 
frequencies. 
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Fig. T-2 depicts an audiogram for a 
normal ear. The measured thresholds are 
connected by straight lines. The ear hears 
as low as 0 dB for the frequencies across 
the spectrum. In fact, this particular ear 
exceeds the normal a little. Younger people 
may be able to score better than 0 dB for 
many of the frequencies. The zero 
reference is a statistical average. Some 
people have better hearing than the 

average. A “3 dB” means that an ear can 
hear a sound softer than the drop of a pin 
on a soft cushion. The minus 3 signifies half 
the intensity. We might approximate this by 

dropping half a pin or a smaller pin. A “5 
dB” is even better. 

This is analogous to some people 
having better vision than normal. The 
normal acuity is 20/20. You see at 20 ft 
what you should see at 20 feet. But some 
people can see at 20 ft what normal people 
see at 15 ft. They are better. Their vision is 
given the rating 20/15. A few people can 
see at 20 ft what normal folks see at 10 ft. 
Their vision is 20/10. As an example, it is 

said that baseball great Babe Ruth could 
read a far license plate when his friends 
couldn't determine the color of the plate. 

Hearing thresholds may be a little better 
than 0 dB or a little worse. As long as the 
threshold is near 0 dB, we consider the 
response normal. Some consider 20/25 
vision normal. These people need to be at 
20 ft in order to read letters they should be 
able to discern at 25 ft. However, this is 
very close to normal. A vision of 20/30 may 
still be good enough to pass a driver's test 
without needing glasses. Similarly, 
someone's typical hearing thresholds may 

be 5 dB for some frequencies; other 

people may score around 5 dB. We might 
say that at +5 dB one has a slight loss just 
as we might say that a person with vision of 
20/25 or 20/30 has a slight visual-acuity 
impairment (without glasses). It is easy to 
correct for the common forms of visual 
impairment by prescribing glasses since the 
difficulty lies with all frequencies of light, the 
image. It is more difficult with the ear since 
some frequencies may be fine, others not. 
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Hearing Loss 
 

Fig. T-3 below shows some degrees of 
hearing losses. A slight loss indicates that 
sound levels need to be louder than 0 dB to 
be heard, but not greater than 10 dB. For 

example, a 5-dB threshold indicates a slight 
loss. A mild loss requires sound levels to be 
near 15 dB to be heard. A threshold near 
25 dB denotes a moderate loss. 

 
 

 
 
 

A threshold of 30 dB across the audio 
spectrum indicates that any sounds below 
30 dB cannot be heard. This means that an 
individual with a 30-dB threshold cannot 
hear at all the drop of a pin on a soft 
cushion (0 dB), breathing (10 dB), a gentle 
breeze (20 dB), or a faint whisper (a little 
less than 30 dB). The whisper at 30 dB is 
barely audible. The hearer is not able to 
understand the whispered message. It is 
too faint to make out phrases and 
sentences. 

Table T-2 indicates how a person with a 
30-dB threshold (across all frequencies) 

hears. We simply call 30 dB our new 
threshold. The hard-of-hearing person 
hears 30 dB as the average person hears 0 
dB. The hard-of-hearing person hears 40 
dB as 10 dB and so on. 

The descriptions for slight, mild, and 
moderate losses refer to the general 
population. In settings where there are 
severe hard-of-hearing individuals, all of the 
above impairments are considered virtually 
normal. Schools for the deaf and hard-of-
hearing can have individuals with hearing 
thresholds of 100 dB. 
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Fig. T-4 gives a rough sketch of a 
possible audiogram for Beethoven as he 
was going deaf during his adult years. 
Beethoven turned 30 in 1800 and around 
this time realized he was going deaf. 
Beethoven's uniformly high threshold (low 
line on audiogram) could have been due to 
the onset of a middle-ear problem. Middle-
ear disorders can often be corrected today 
through drugs or surgery. Beethoven’s case 

is still being debated today. Eventually, 
Beethoven's audiogram dropped lower and 
lower. His genius allowed him to continue 
composing music after he was profoundly 
deaf! For example, he composed his 
famous Ninth Symphony afterwards. He 
completed this monumental work in 1824. 
The last movement incorporates a choir. 
Here Beethoven sets Schiller's Ode to Joy 
to music. 
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Fig. T-5 illustrates the audiogram for a 
rock musician.  Rock music is usually 
played at sound levels harmful to the ear. 
Rock music is often 120 dB. On stage it can 
be 140 dB. We can actually feel  inside us 
sound levels at about 120 dB and above. 
The left ear ("X" in Fig. T-5) of our rock 
musician is worse than the right ear ("O") 
because of the proximity of the speaker to 

that ear during practice and performance in 
the particular band. Loss typically begins at 
the high frequencies. A relevant factor may 
be the fact that the hair cilia responding to 
high frequencies are close to the oval 
window, the entry point for the sound. We 
also know from the Fletcher-Munson curves 
that the ear is more sensitive at the high-
frequency end. 
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In Fig. T-6 we employ a frequency 
equalizer to simulate hearing loss. We 
studied equalizers in an earlier chapter. The 
equalizer is a signal-processing unit that 
consists of an array of active filters. The 
equalizer in Fig. T-6 is a 10-band frequency 
equalizer. The cutaway illustrates the right 
channel. Rather than use the equalizer to 
"equalize" frequencies for our specific 
listening environment, we use the 
processing unit to "unequalize" frequencies 
in this example. 

The frequency equalizer in Fig. T-6 
allows for boosting frequency bands up to 

+15 dB or filtering them down to 15 dB. 
We can set all the bands up to +15 dB.  We 
then lower the master volume control to 
compensate. Now we have the choice of 

knocking any frequency band down to 15 
dB, which is 30 dB lower than the +15 
setting. Therefore, we can achieve up to a 
30-dB loss. We arrange the slider controls 
to imitate the audiogram of our rock 
musician. This simulates the hearing loss. 

The better frequency equalizers like our 
10-band equalizer in Fig. T-6 have 

spectrum analyzer displays (see Fig. T-7). 
The spectrum analyzer is usually located in 
the center of the front panel. It displays with 
rapidly moving lights the current frequency 
distribution of the sound we are hearing. 
The sound typically changes constantly as 
we hear speech or music. The analyzer 
displays the amount we hear in each 
frequency band from moment to moment. A 
snapshot of the spectrum analyzer display 
appears in Fig. T-7. Note the absence of 
activity at the higher-frequency end of the 
spectrum. This is a result of our setting of 
the slider bars in Fig. T-6. The analyzer in 
Fig. T-7 reflects what a person with a 
hearing loss hears. 

With specialized laboratory filters we 
can simulate more severe hearing losses. 
Our commercial stereo equalizer gives us 
control of 30 dB for the frequency bands. 
This is more than satisfactory for the usual 
use of an equalizer - to make the 
adjustments necessary in accommodating 
room acoustics. 

  

 
 

Damage to the inner ear is usually 
permanent. Once the hair cilia are 
destroyed, they cannot recover. One should 
always take precautions when around 

nearby loud sound levels. It is advisable to 
wear ear protection when working with 
power equipment such as weed eaters, 
lawn mowers, and power saws. You should 
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not expose yourself to sound levels near 80 
dB and above for long periods of time. Note 
that a rock band playing at 120 dB is 
10,000 times more intense in terms of 
energy than an 80-dB sound. Or to look at it 
another way, a rock band cranking away at 
120 dB is equivalent to ten thousand other 
bands playing at 80 dB. How do we know 
this from the way the decibel scale works? 
Before we conclude this chapter we discuss 
two more common forms of hearing loss. 

1. Presbycusis (prez-bee-KUE-sis). 
Presbycusis is the natural hearing loss at 
high frequencies that accompanies age. A 
child may be able to hear 20,000 Hz and 
beyond. The young adult at age 20 
(assuming no loss due to exposure to loud 
sounds) may hear 18,000 Hz and beyond. 
Then after a decade, this may drop to 
15,000 Hz. In later years, it may dip to 
12,000 Hz or 10,000 Hz. However, all may 
still pass the hearing test since that 
examines only to 8,000 Hz. 

It is interesting to conjecture how much 
of our normal hearing loss is due to aging 
versus our exposure to higher levels of 
noise that accompany an industrialized 
society. One study found that older people 
at age 70 in a third-world country had 
hearing as good as the average 30-year-old 
in an industrialized society. This study 
suggests the importance of factors other 
than age. 

2. Tinnitus (tin-NIGH-tis). Tinnitus is an 
internal perception of sound when there is 
no sound present at all. It is sometimes 
referred to as a ringing or a buzzing tone. 
Tinnitus can be caused by infections or 
medication. However, the most serious 
form is due to damaged hair cilia in a 
narrow frequency band. A sudden loud 
exposure such as a gunshot can destroy 
some hair cilia and damage neighboring 

ones that partially recover. Fig. T-8 shows 
an audiogram for localized destruction of 
hair cilia. 

The ear described in Fig. T-8 tested 
normal for all frequencies except 2000 Hz. 
There is damage in this vicinity. The 
strange thing about the ear-brain system is 
that a person with the audiogram in Fig. T-8 
may permanently hear a tone or ringing of 
frequencies in this region. The ear can't 
detect these frequencies. Yet there is an 
ever-present internal sensation of these. 
When it is quiet externally, the ringing is 
most noticed. These individuals have to 
learn to bear with this sound. They also 
have to learn to sleep with it. 

The dip in the audiogram of Fig. T-8 is 
called the acoustic trauma notch. Perhaps 
the ear hears an explosion at close range. 
The sound is intense. Most of the hair cilia 
recover but a small group does not. They 
are permanently out of commission. The 
audiogram then shows the acoustic trauma 
notch. The individual may hear a ringing 
with a pitch or pitches corresponding to the 
damaged hair cilia along the basilar 
membrane. 

 
3. Conductive Loss. When an individual 

has a conductive hearing loss, the 
audiogram shows a problem across the 
entire frequency spectrum like the 
audiogram in Fig. T-4. 

 
4. Sensory Neural. A sensory neural 

hearing loss is one that involves damage to 
hair cells in the inner ear. This damage can 
involve a region of the hair cells. In the 
frequency regions where there is no 
damage, the individual will hear normally 
and the audiogram level will be up near 0 
dB. See the audiograms in T-5 and T-8. 
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--- End of Chapter T --- 
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U. Spectrograms 
 
 
 

Northern Cardinal 
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The spectrogram is a special plot of 
sound over a short time frame. We have 
seen that audiograms use two axes to 
incorporate on a graph two basic properties 
of sound. The properties tested in an 
audiogram are amplitude (sound level) and 
frequency. The third basic feature of sound, 
the timbre, is understood by amplitudes and 
frequencies of the spectrum. The spectrum 
analyzer illustrates this. A periodic wave 
has a Fourier spectrum of harmonics. The 
frequency of the periodic complex 
waveform sets the base frequency for its 
Fourier spectrum. 

However, the spectrum analyzer 
responds to all sounds, both periodic and 
aperiodic. An aperiodic sound does not 
have a defined frequency. So we can't 
express such a sound in terms of a 
harmonic series. Noise is a good example. 
It contains all frequencies. Inharmonic 
tones such as those produced by balanced 
modulation present another example. 
These contain non-harmonic spectral 
components. Nevertheless, a frequency 
spectrum can still describe these sounds. It 
just means that we need to put more in the 
spectrum than we have to for periodic 
waveforms. 

The problem is this. Aperiodic tones do 
not remain the same as time goes on. They 
can be crashes, speech, music in progress, 
etc. For a sketch or graph to reflect these 
changing waves, we need to consider a 
time axis. This pushes us to three variables: 
amplitude, frequency, and time. This 
implies a graph in three dimensions, the 
axes being length, width, and height. We 
will see that the spectrogram is an 
ingenious way to reduce such a graph to 
two dimensions! To understand how this is 
accomplished, we once again return to our 
square wave. 

Fig. U-1 illustrates the square wave we 
encountered earlier in our discussion of 

envelope shaping. Focus your attention on 
the sustain phase. The sustain is constant 
in time for the duration of the sustain phase. 
This is the easiest part of the wave in Fig. 
U-1 to consider. We will translate this 
section of the wave, step by step, into a 
spectrogram. Before considering this full-
blown spectrogram which incorporates 
amplitude, frequency, and time information, 
let's look at combinations of two 
parameters. 

First, take amplitude and time. The 
amplitude of a wave is a measure from 
equilibrium to the maximum height. The 
maximum heights of the square wave 
during the sustain phase are constant. The 
periodic square wave changes in 
displacement from crest to tough, but the 
boundary height (amplitude) for the crests 
is fixed. Fig. U-2a is a graph of amplitude 
(vertical axis) as a function of time 
(horizontal axis). For any time along the 
horizontal, the amplitude is seen to be the 
same. The value of the constant amplitude 
could be read on the vertical axis if there 
were a scale of numbers there. This 
amplitude is the net result of the harmonics 
that combine to form the overall square 
wave. 

In Fig. U-2b we choose to plot amplitude 
(harmonics) and frequency. This plot is our 
familiar decomposition of the wave in terms 
of its Fourier spectrum, similar to what the 
spectrum analyzer on an equalizer does. 
The equalizer spectrum analyzer is not as 
detailed because there, groups of 
frequencies are thrown together into a 
series of bands. However, the equalizer 
shows the changing spectrum in time by 
providing us with spectral bars that flicker at 
different heights. Fig. U-2c is obtained by 
folding Fig. U-2a down and replacing the 
total amplitude with the harmonic 
amplitudes. 
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Fig. U-2d is obtained from Fig. U-2c by 
looking at the edges of the amplitude tops. 
Taller amplitudes are indicated by darker 

lines in Fig. U-2d. In this way, three 
dimensions are collapsed into two. 

 
 

 
 



Copyright © 2012 Prof. Ruiz, UNCA U-4

Fig. U-3 illustrates noise spectrograms. 
The spectrogram for white noise contains 
all frequencies. Frequencies are indicated 
along the vertical axis in a spectrogram. 
Therefore, all frequencies get shaded in for 
white noise. Shading proceeds to the right 
as long as the white noise is present. 
Moving along the horizontal axis of our 
graph represents movement in time. 

A spectrogram of high-frequency noise 
describes a hissing sound. Tape hiss, 
which begins at around 5 kHz, is a good 
example. Low-frequency noise is heard 
more as a sigh. Let out a deep breath. 
Different shades of darkness represent 
different sound levels. The shading in Fig. 

U-3 is uniform for each case. White noise 
actually has more emphasis in the higher 
frequencies. The spirit of the spectrograms 
that follow is approximate. 

Fig. U-4 is a set of spectrogram 
sketches. Many of these have been 
adapted from spectrograms made at Bell 
Laboratories, appearing in F. Alton Everest, 
Acoustic Techniques for Home and Studio, 2nd 
ed. (TAB Books, Blue Ridge Summit, PA, 
1984). An excellent source of bird 
spectrograms can be found in Chandler S. 
Robbins, Bertel Bruun, and Herbert S. Zim, 
A Guide to Field Identification: Birds of 
North America (Golden Press, New York, 
1983). 
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Fig. U-4. Spectrogram Sketches. 
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Specific bands of frequency are 
enhanced in many systems such as our 
voice and musical instruments. A vibrating 
mechanism produces frequencies. Then 
some of these frequencies get enhanced by 
resonances in the system. We consider an 
acoustic guitar in order to illustrate this. We 
perform an experiment with our guitar. We 
do not play it at all since we want to 
investigate what the cavity and wood do to 
the sound. We blow white noise into the 
guitar cavity and analyze the resulting 
sound. The guitar modifies the white noise. 
It enhances certain frequency bands due to 
resonance. The inner cavity of the guitar 

has more complex resonances of air 
vibration than a long narrow pipe. 

The wood of the guitar also vibrates in 
response to the noise. The wood resonance 
vibrations depend on the characteristics of 
the wood. Certain bands of frequencies of 
the white noise are amplified. The 
spectrogram of the final sound is the white-
noise spectrum with the enhanced 
frequency bands. See Fig. U-5. These 
enhanced regions are called formants. The 
formant regions are determined by the 
shape and size of the guitar cavity, the type 
of wood and other materials used in the 
construction. 

 
 

 
 
 

During the normal playing of the guitar, 
the strings are used to produce the initial 
vibrations of sound. The strings produce 
periodic tones. Each pitch has a 
fundamental and associated overtones. 
Those overtones falling in formant regions 

of the guitar get enhanced. The tone 
becomes richer. The  final sound is unique 
to the make of the guitar. A similar analysis 
can be made with the violin. The final rich 
spectrum, dependent on the formants, is 
once again, a unique timbre. 
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The human voice has formants that 
vary, depending on the shape of the vocal 
system. The cavities involved are the 
larynx, pharynx, mouth, and nasal cavity 
(see Fig. U-6). These depend on the size of 
the person. Also, the individual can control 
a considerable portion of the vocal system 
in order to change these dramatically. 

Colds and congestion influence the nasal 
cavity. The vibrations originate at the vocal 
cords. The sound is enhanced by the 
neighboring cavities in a similar way the 
acoustic-guitar cavities bring out the sound 
of a vibrating guitar string. Formants are 
relevant. 

 
 

 
 
 

We once again turn to biology. It is 
obvious from Fig. U-6 that the human voice 
system is quite complex. We would like to 
have a simple model. Here is where 
physics comes in. We can take the vocal 
cords to be the closed end of a pipe,  the 
pipe extending all the way to the mouth 
opening. See Fig. U-7. Look upward, place 
your thumb on your Adam's apple and 
touch your lips with your forefinger. Take a 
ruler and measure this distance between 
your thumb and extended forefinger. The 
result varies from person to person, roughly 

correlating with height. A typical value is 
around 15 cm. 

A singer can produce a range of pitches 
with considerable control over the voice 
system. We can determine very 
approximately where the formant regions 
are in the frequency spectrum. The formant 
frequencies are related to the natural 
frequencies of vibration in the cavity of the 
vocal tract. In our model we approximate 
this tract as a closed pipe. Therefore, the 
vocal formants will be set by the 
resonances of a closed pipe. These 
resonance frequencies are odd harmonics. 
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   The steps for determining the resonance 
frequencies of the closed-pipe vocal tract 
are given below. The key issue is finding 
the fundamental. We know that the 
resonances are the odd harmonics. Once 

we know the fundamental frequency "f" as a 
number, the odd harmonics 3f, 5f, 7f, and 
so on are then known explicitly. These are 
the vocal formant regions of our model. 
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Vocal formants depend very much on 
the shape of the cavities in the vocal 
system. For the ideal closed narrow pipe, 
we find approximately 500 Hz for the first 
vocal formant. An adult's first vocal formant 
can vary a couple hundred hertz either way 
from 500 Hz, depending on the sound 
produced. The second formant can vary 
over an even wider range. Since vocal 
formants are dependent so much on the 
sounds we pronounce, the best way to 
determine vocal formants in specific cases 
is from spectrograms. Some professional 
singers have been found to have a strong 
formant region between 2500 and 3000 Hz. 
This formant is called the singer's formant 
or singing formant. It assists in projecting 
the voice. Is it a coincidence that trained 
singers can achieve this formant, which 
happens to be right where our ears are 
most sensitive (consulting the Fletcher-
Munson Curves)? 

Simplified spectrograms are given in 
Fig. U-8 for six vowels spoken with a steady 
voice at a fundamental of 150 Hz. The 
steady voice producing a vowel sound is 
virtually a periodic tone. We can then 
analyze the spectrum in terms of 
harmonics. The equally-spaced horizontal 
lines are the harmonics H1, H2, H3, etc. for 
the 150-Hz wave. They have frequencies 
150 Hz (1f), 300 Hz (2f), 450 Hz (3f), 600 
Hz (4f), etc. The spacing between 
harmonics is simply 150 Hz since each time 
you rise to the next harmonic, you add 
another 150 (i.e., f). Note the richness of 
the overtones. Some of the sounds have 
over 20 harmonics. 

The more intense harmonics are darker. 
Sometimes a harmonic is not intense 
enough to see. The formants are indicated 
as F1, F2, etc. These are enhanced 

harmonics due to the shape of the internal 
cavities of the vocal system. The first 
enhanced region is called the first formant 
region and so on. There is no correlation in 
many cases to the formants of our ideal 
pipe since the voice can change formants 
by inner shaping of resonance cavities. 

However, note that the [i] sound has 
formant regions near 500 Hz, 2500 Hz, and 
3500 Hz.  These correspond to formant 
regions of our model (the 1st, 5th, and 7th 
harmonics of the simple closed-pipe model 
of the voice system).  But the formant 
corresponding to the 3rd harmonic (1500 
Hz) has been suppressed. The 3rd 
harmonic has been filtered out by the voice 
system.  The shape of the system for this 
vowel makes it difficult for the 3rd harmonic 
to resonate.  The 2nd formant region (F2) 
for [i] is near the 5th harmonic of the 
"closed-pipe" (2500 Hz), which is close to 
H16 of the 150-Hz wave being produced 
(making H16 and also H15 more intense). 
We know 2500 Hz is close to H16 because 
the frequency of the 16th harmonic is 16 x 
150 Hz = 2400 Hz. 

The symbols employed as pronunciation 
guides for the sounds in Fig. U-8 are from 
the International Phonetic Alphabet (IPA), 
devised in the late 1800s. The IPA consists 
of basic units of speech called phonemes 
(FOE-neams) that can be put together to 
indicate how any word in almost any 
language is pronounced. The IPA is used 
by teachers of the hard-of-hearing, speech 
pathologists, actors, singers, radio and TV 
announcers, and others. A singer armed 
with the IPA can know how to sing a phrase 
in a foreign language. The  IPA enables you 
to pronounce words in other languages you 
don't understand, if you have mastered the 
basic sound units (about 40) of the IPA. 
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The data in Fig. U-8 comes from 
doctoral research in an area where 
psychology, physics, and medicine 

converge. You should consider it an 
achievement that you can understand and 
appreciate such advanced research data. 

 
 

 
 

 
 
Sketches are adapted from spectrograms found in Colin Painter, An Introduction to Instrumental 

Phonetics (University Park Press, Baltimore, 1979). 
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Two speech spectrograms can be seen 
in Fig. U-9. The pictures are examples of 
those produced by a sound spectrograph. 
The spectrograph analyzes the sound by 
playing it over and over again in order to 

scan the frequencies up to 8 kHz. A drum 
spins and an ink pen records the presence 
of frequencies on a paper rolled on the 
drum. When finished, the unwrapped paper 
becomes the spectrogram. 

 
 

 
 
Reference: F. Alton Everest, Acoustic Techniques for Home and Studio, 2nd ed. (TAB Books, 
Blue Ridge Summit, PA, 1984). 
 
 

 
--- End of Chapter U --- 
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V. Musical Temperament 
 
 

We saw in the last chapter how the 
human voice system can produce a rich 
variety of sounds. Earlier, we learned how 
engineering electronics can generate sound 
and modify it. We also investigated the 
storing of sound on media such as records, 
tapes, and CDs. In the final chapters we 

turn to the musical production of sound with 
traditional instruments, until the very last 
chapter. It is fitting that most of the final 
phase of this text be dedicated to that which 
historically has provided our current culture 
with the rich esthetic experience of musical 
art. 

 
 
The Major Scale 
 

The major scale is depicted in Fig. V-1 
below. The frequency ratios are indicated 
for a perfect octave, perfect fifth, perfect 
fourth, and perfect major third. These 
intervals provide for the most consonant 
combinations of tones after the unison. The 
octave is so close to the sound of the 
unison (two identical notes sounding) that 
we proceed to the next ratio (the 3-to-2) to 

serve as a foundation for a system of music 
theory, the cycle of fifths. Movement by 
fifths is very pleasing. The traditional way to 
end a piece is to move from the fifth 
(dominant) to the root (tonic), achieving a 
sense of coming home and completion. 
Such a harmonic change  is called a 
cadence.

 
 

 
 

Jazz musicians employ the cycle of 
fifths often. Once the author had a heated 
debate with a sax player of 15 years who 
claimed it was the cycle of fourths instead. 
Finally the author realized that the cycle of 
fourths is in a sense the same as the cycle 
of fifths. If you move up by a fifth and call 
the new note Do, moving down by a fourth 

gives the Do that is an octave lower. Since 
Do defines the key, you have a transition to 
the same key in each case. Fig. V-2 
illustrates this connection. To move up by a 
fifth (3:2), multiply by 3/2. To move down a 
fourth (4:3), use 3/4 instead of 4/3 (in order 
to get a fourth lower). 
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The Twelve-Tone Scale 
 

 We are going to analyze the major 
scale, which is the standard eight-tone 
scale we become accustomed to in grade 
school. Our analysis will show that the 
"perceived jump" from note to note is not 
the same. Rather than rely on our ears to 
tell us this, we will reach this conclusion 
from mathematical analysis, using 
arithmetic. We will conclude that there is 
room for more notes in the major scale 
since some of the jumps are about twice as 
great as others. We can stick in an extra 
note here and there so that the perceptual 
jump from each note to the very next is the 
same. Recognition of this fact by hearing 
the notes is the experimental approach. 
Both methods agree. Good science 
requires that theory support experiment and 
vice versa. 

Fig. V-3 takes us through the analysis 
step by step. First we start with the major 
scale. We list the perfect ratios for the 8 
tones relative to the first note Do. This 
version of the major scale (the just major 
scale), as noted in an earlier chapter, is 
also called the just diatonic scale. We next 
express the frequency ratios as fractions. 
Note that these fractions are greater than 
one. A fraction is simply one number 
divided by another. As an example, 
consider the ratio 3:2. We write this ratio as 
3/2, getting ready to multiply our base 
frequency "f." The base frequency is the 
frequency we choose for Do. Therefore, we 
see (3/2)f in Fig. V-3. 

Next we take 240 Hz for Do as we did 
before. This makes the arithmetic easier. 
For the fifth, (3/2)f, the result is (3/2)240 = 
3(120) = 360 Hz. These have been worked 
out before in the text when we first 

established the just diatonic scale. You 
might want to review that chapter at this 
time. The frequencies reproduced in Fig. V-
3 are the same. To make our analysis even 
simpler, we divide each frequency by 10. 
Then, 240 becomes 240/10 = 24. A zero is 
knocked off each frequency. This particular 
realization of the just diatonic scale is too 
low to be practical, but it serves our 
purpose. As an exercise, start with 24 Hz 
and work out all the other frequencies using 
the appropriate ratios. 

The next row compares adjacent tones. 
The first two frequencies (24 Hz and 27 Hz) 
give a ratio comparison of 27/24. The next 
row expresses this ratio in reduced form: 
27/24 = 9/8. Note the importance of ratios. 
The perceived jumps in frequency are 
based on ratios. Remember our steps along 
the basilar membrane are organized by 
ratios (equal steps of 3.5 mm for each 2:1 
frequency ratio). If our 9/8 were 8/8 instead, 
we would have the same note. The 9/8 has 
an additional 1/8 beyond unity (i.e., 1). We 
use this 1/8 to denote the "extra 
contribution," the extra part beyond 1. We 
then consider 1/8 and 1/9 essentially the 
same size. If one pie is cut into 8 pieces 
and a second pie cut into 9 pieces, could 
you tell the difference between a 1/8-size 
slice and a 1/9-size slice? We also replace 
1/15 by 1/16 since these are even closer to 
being the same size. 

We are now ready to draw the big 
conclusion. There are 5 bigger "pieces of 
the pie" and 2 smaller pieces. We cut the 5 
big pieces in half so every new piece 
resulting has the same size. This introduces 
5 more tones. These are the 5 black keys 
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appearing on the keyboard for each octave. We have "derived" the black keys! 
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Now we have the 7 notes from Do to Ti 
and 5 additional notes. This gives us a 
twelve-tone scale. We consider the note an 
octave higher than Do (i.e., Do') as the 
beginning of the next 12 tones. For a 
moment, retreat to our major scale. Each 
step which has an extra contribution of 1/8 
is called a whole step or whole tone, while 
the steps with the extra 1/16 contribution 
are called half steps or semitones. In the 
new twelve-tone scale, all the steps are 
equal. You make 12 half steps in going 
from Do to the Do that is an octave higher 
(Do'). To step by whole tones on the twelve-
tone scale, just skip a note at each step. 

Our prior restriction to the major scale 
limits us in playing songs since many tunes 
use the additional notes we have added. 
We can give a formula for the major scale. 
From your starting note you proceed to by 
first making a whole step. You make a 
whole step by skipping the very next note 
(whether it is a black key or white key) and 
land on the note after the one you skip. For 
a half step, you go to the very next note. 
The formula for the major scale is: whole-
whole-half-whole-whole-whole-half (see 
Fig. V-4). Note that this formula consists of 
two whole-whole-half sections joined by a 
whole step or connection in the middle. The 
total number of steps in the scale is 7. 

Centuries ago some mystics found 
profound meaning in the formula for the 
major scale. We noted that Pythagoras was 
a mystic and mathematician. Nearly 2000 
years later, Kepler (1600) likewise felt that 
mystical secrets of the universe were to be 
found in numbers and formulas. In a sense, 
the professional physicist is not too far from 
this point of view. The secrets to 
understanding nature can be expressed in 
beautiful mathematical form. But the 
mystics went further. The seven steps of 

the scale meant much more. The number 7 
was considered sacred. We see this theme 
often in different historical settings: the 7 
days of the week, the early 7 celestial 
bodies of the crystalline spheres (Moon, 
Mercury, Venus, Sun, Mars, Jupiter, and 
Saturn), the 7 sacraments, the 7 colors of 
the spectrum, and the 7 steps of the 
musical scale. 

Some mystics gave meaning to the two 
half steps in the major scale. To them, 
these represented a break from the usual 
progression of whole tones. They applied 
this in everyday life by saying that all efforts 
following from an original aim (Do) can get 
sidetracked in two key places. One is after 
we get started and the other is at the very 
end. 

Have you every worked on a goal that 
proceeded smoothly for awhile (Do-Re-Mi) 
and then you reached a challenge (the half 
step from Mi to Fa)? Most people quit at 
this point. The cleaning of the room does 
not get completed, the term paper remains 
unfinished, you don't read the entire novel. 

However, if you apply a conscious effort 
at the challenging point (Mi-Fa), you go on 
smoothly again for awhile (Sol-La-Ti) until 
the very end. You can still fizzle out. The 
modern-day version of this law is Murphy's 
Law (originating in electrical engineering): 
"If something can go wrong, it will." And it 
usually does so at the least expected 
places - after we just start and think things 
are going well, and right when we think we 
are about to be finished. 

A scale with no half steps is the whole-
tone scale, which Debussy liked (see Fig. 
V-4). Another is the double-diminished 
scale, popular in jazz improvisation. 
Abbreviations are used for whole (W) and 
half (H) steps in the example for the double-
diminished scale in Fig. V-4. 
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There are many other scales with 
different formulas. Go to a piano and pick 
out the scales we have described: the 
major scale, the whole-tone scale, and the 
double-diminished scale. Use Fig. V-4 for 
assistance. Then try the natural minor scale 
(whole-half-whole-whole-half-whole-whole). 
The chromatic scale is the scale obtained 
by playing all the notes (half, half, half, 
etc.). The modern composer Schoenberg 
(SHERN-berg) liked the complete twelve-
tone scale and devised lines using the 
tones once and only once. These lines are 
called twelve-tone rows. 

They sound strange (modern) since a 
note can't be used more than once in the 
musical line. Try writing a sentence that 
uses each letter of the alphabet once and 
only once. It's impossible. But you can write 
a sentence that uses all the letters of the 
alphabet: "The quick brown fox jumped over 
lazy big cats." Can you think of another that 
uses less than 37 letters? How about just a 
group of words, following the modernist 
Schoenberg, where the meaning can be 
cryptic? 
 
Equal Temperament 
 
   Earlier in our treatment of whole steps, 
we considered that 1/8 and 1/9 were 
essentially equal. We did the same for 1/15 
and 1/16 (the half steps). We would like to 
have more precise definitions for half steps 
and whole steps. Historically the difficulty 
with tuning to perfect ratios presented 
problems. If you start with a different key to 
play a scale, the frequency ratios are not 
preserved in the new key. Temperament 
refers to the specific choices we make for 
the frequencies in our scale. The uniform 
manner in which frequencies are chosen in 

equal temperament is described in this 
section. 

The whole steps in our just diatonic 
scale have slightly different frequency ratios 
since really 1/8 is not exactly the same as 
1/9. The equal-tempered scale solves this 
problem by making all half steps precisely 
the same in such a way that by the time you 
reach the octave, the frequency has 
doubled. The perfect-frequency ratios are 
given up in favor of equal-frequency ratios 
between adjacent tones. The only perfect 
interval remaining is the octave. The fifths 
are no longer perfectly 3:2, the fourths no 
longer perfectly 4:3, etc. 

The remaining task is to find the magic 
ratio for the half step satisfying the criterion 
that 12 half steps give a perfect octave 
(2:1). This problem is identical to 
determining the annual interest rate 
(applied once yearly) needed so that your 
money doubles in 12 years. Each half step 
is analogous to each year. The growth in 
frequency from our example of 240 to 480 
takes 12 steps. We want the growth rate to 
be the same from step to step. Growth in 
frequency is analogous to growth in money. 

In banking, if you save your money, you 
get back the original amount plus interest. If 
your annual interest rate is 8% for the year, 
$100 earns you $8 at the end of the year. 
We assume interest is applied once yearly. 
Better deals apply interest earnings more 
than once a year. For example, if interest is 
compounded quarterly, every 3 months one 
applies 2% interest. This is one-fourth of 
the yearly rate so technically it is still 8%. 
However, applying the appropriate 
percentage more often results in a better 
deal for you, because your money starts to 
grow after 3 months. 
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Consider an interest rate of 10% and an 
initial amount of $100. After the year, the 
interest is $10. Our new amount is $110. 
We have the original $100 plus the $10 
interest. We leave the $110 in for another 
year. The interest the following year is 10% 
of $110. This is $11. Note that we not only 
receive an interest of $10 for the $100, but 
an additional $1 for the $10 of interest we 
made the first year. We are getting interest 
on interest in the second year. This is good 
news. To get the next year amount just 
multiply the last amount of money by 1.1. 
   Table V-1 gives growth patterns for 
several interest rates and a starting value of 

$240. Values in the table are rounded off. 
This is unlike what banks do. They keep 
fractional amounts over a penny. In the 
table, everything is carried from year to 
year in the calculator, rounding off annual 
amounts for table entries. Which case 
approximates the just-diatonic growth 
pattern at the far right of the table? We can 
cleverly answer without looking at the table.  
We know from before that each half step 
corresponds to approximately an excessive 
1/16. This fraction is about 0.06 in decimal 
form. That is 6% interest! 
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Using the 6% interest for the 
frequencies means that our new frequency 
is the old one plus 6%. To obtain the 6%-
increase we multiply the old frequency by 
0.06 or 1/16. The new frequency (original + 
6%-increase) can be obtained by 
multiplying the old frequency by 1 + 0.06, 
i.e., 1.06. However, we see that by the time 
we get to twelve steps or years, the answer 
is a little too high. In Table V-1, the amount 
for 240 after 12 years is 483 instead of 480. 
So 1.06 is slightly too high. 

We want to know that special number 
that we can multiply something by 12 times 
and arrive at twice our starting value. Let's 
call the special number "a." Then, 
multiplying 12 times, using the dot-symbol 
"⋅" for the multiplication symbol, we have 
 

 
 

Mathematicians call "a" the 12th root of 
2. The answer is a little less than 1.06 as 
we expect. It is given below. 
 

 
 

This is the number we multiply any 
frequency by to get the next one a half step 
higher. It corresponds to an interest of a 
little over 5.9%. It is almost 6%. How 
accurate in theory does this number need 
to be? This question is answered by 
perceptual psychologists. They study how 
close two frequencies need to be before we 
judge them to be the same. They research 

stimuli in general such as loudness, color, 
or taste. The difference between two stimuli 
where the stimuli cease to appear the same 
is called the just noticeable difference 
(JND). The just noticeable difference for 
frequency depends on where along the 
audio spectrum we are being challenged to 
make the match. 

Notice that when high notes are played 
on the piano, it is more difficult to tell them 
apart compared to notes in the middle 
range. On the average, the JND for 
frequencies in the range of musical 
instruments is about 1 Hz. With a starting 
frequency of 1000 Hz, in order to get 
accuracy of 1 Hz, we can use 1.059. This 
gives 1059 Hz. The author once wrote a 
computer program to generate all the 
equal-tempered frequencies on the piano. 
One should always use the best accuracy 
possible for the 12th root of two, find all the 
frequencies, then round to the nearest hertz 
at the end. 

Piano tuners establish an equal 
temperament for the middle octave, then 
pretty much tune the other notes 
proceeding by octaves. Traditionally tuners 
have used their ears. Some today use 
electronic devices for assistance. There is 
debate as to which can provide the best 
tuning. There is no question that a well-
trained tuner can do a superb job without 
electronic aid. Some argue that electronic 
devices get in the way when you strive for 
quality tuning. 
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Transposing 
 

We would like to construct an equal-
tempered set of 12 tones from which any 
other equal-tempered set, starting on a 
different first note, can be determined. So 
we choose 1 Hz for our first note and 
proceed. If you want to start with 300, then 
you multiply each tone of the sample set by 
300. Banks do this also with loans. For 
example, they give values based on $1000 
for home loans. If you want to borrow 
$105,000 and find out your interest 
payment, then you multiply the interest 
payment based on $1000 by 105. 

To maintain an analogy with finance, let 
1 stand for $1.00. Then, for our annual 
interest rate of  5.9%, we earn almost 6 
cents interest after one year. The bank will 

give you 5 cents interest and keep the 
fraction of a penny. But you might say 90% 
of a penny is so close to a penny. Too bad!  
The banks round down. They make much 
money this way. However, when we apply 
the interest formula below, we round in the 
standard way. After one year, we have 
$1.06. We obtain this by multiplying our 
$1.00 by 1.059. The 1 in 1.059 gives us 
back our original dollar and the 0.059 part 
gives us the 5.9 cents of interest. For the 12 
years or steps, we multiply by 1.059 twelve 
times. Actually more decimal places were 
used in the calculator and numbers 
rounded off last to get the results in Fig. V-
5. 

 
 

 
 
 

We can now apply Fig. V-5 to our 
favorite starting point, 240 Hz. Or, we might 
say we would like to put $240 in the bank 
and leave it there for 12 years. Our money 
will double to $480 after 12 years. We 
multiply each of the values in Fig. V-5 by 
240 to find out how much our money is 

worth year by year. We "transpose" the 
values in Fig. V-5 to a new starting point. 
Musicians transpose to other keys 
musically by playing in different keys rather 
than calculating frequencies. The concept is 
similar.
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The eight notes of the just diatonic scale 
are compared with equal-tempered 
frequencies in Table V-2. A calculator was 
employed that used an extremely accurate 
value for the 12th root of two for the equal-
tempered values. Then, frequency values 
were rounded off to the nearest one tenth of 

a hertz. The starting frequency for each 
scale was set to 240 Hz. Since the equal-
tempered scale preserves octave ratios of 
2:1, the ending notes are in exact 
agreement. The "black keys" of the equal-
tempered scale are not listed since they are 
not present in the just diatonic scale. 

 
 

 
 
 

The equal-tempered scale has a perfect 
ratio only at the octave. Perfect intervals in 
other places are lost. Remember that the 
JND in frequency at midrange is about 1 
Hz. Therefore, the frequency difference of 
0.6 Hz for the 2nd degree of the major 
scale is hardly noticed. However, the 2.4-
Hz difference for the 3rd degree exceeds 
the 1-Hz tolerance. The 3rd degree on the 
equal-tempered scale is slightly sharp (i.e., 
higher in frequency) relative to a perfect 
major third. The 1st and 8th degrees for the 
just diatonic and equal-tempered scales are 
in perfect agreement. The 2nd, 4th, and 5th 
degrees are very close. The 3rd, 6th, and 
7th degrees are not as close. 

To compare the scales in the next 
octave, double every frequency in Table V-
2. Consider the 6th degree. In Table V-2, 
the difference is 403.6 − 400 = 3.6 Hz. For 
the scale an octave higher, the difference 
between the 6th degrees is twice this: 807.2 

− 800 = 7.2 Hz. Things are worse. This 
trend continues. However, we lose our keen 

frequency discrimination in the highest 
octave of the piano. 
 
Musical Range 
 

The piano is an excellent guide for 
studying musical range. The piano has the 
largest range of all instruments except for 
some organs. The letter names for the 
notes are very convenient in discussing 
musical range. See Fig. V-6 for the letter 
names of the major scale. Piano students 
learn them by first remembering that "C" is 
the key to the left of the pair of black keys. 
The pattern repeats on the piano. Find any 
place where there are two black keys 
grouped and there is a "C" to the immediate 
left. The "D" is the key that's between the 
two black keys, "E" is to the right. The "F" is 
to the left of a group of three black keys and 
so on. If you are not a musician, next time 
you are near a piano, see how fast you can 
hit all the "D" notes on the piano from 
bottom to top. 
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Fig. V-7 displays the entire piano 
keyboard. The first note (lowest) on the 
piano is an "A." We use the convention that 
calls the first "C" on the piano C

1
. The note 

A1 is the "A" in the major scale that starts 

with C
1
. Therefore, we refer to the very first 

"A" on the piano as A
0
. 

Note that there are 7 complete scales 
starting with a "C." Since we added the 
black keys to the tones of the major scale, 
each complete scale is the chromatic scale 
with 12 notes. You can play a major scale 
starting on any of these 12 notes if you 
follow the formula for a major scale. There 
are 12 such scales, 7 for the white keys and 
5 for the black keys. 

Pianists spend hours learning to play 
these rapidly with both hands. The 7 
octaves of the 12-tone chromatic scale give 
us 7 x 12 = 84 keys. There are three 
additional keys at the bottom and the sole 
"C" at the top. The uppermost "C" supplies 
the highest 12-tone scale with its resolution 

Do. Therefore, there are 84 +3 + 1 = 88 
keys on the piano. 

The last item remaining is to fix the 
frequency of one note, to get started. 
Equal-temperament does the rest. The 
standard is to set A4 to 440 Hz. This is the 
note the first violinist hits on the piano when 
the orchestra tunes up for a piano concerto. 
You double 440 to get A

5
 and halve 440 to 

get A
3
 and so on in Fig. V-7. Multiplying 440 

Hz by 1.059 gives the next highest key, the 
black key to the right of A

4
. We refer to this 

key as A#
4
. The symbol "#" is called a 

sharp symbol. We say "A-sharp-4." Dividing 
440 by 1.059 gives us the black key to the 

left of A4, called Ab
4 or "A-flat-4." Note that 

Ab
4 is also the same as G#

4
. Sharp means 

move one half step to the right; flat means 
move one half step to the left. The piano 
frequencies range from 27.5 Hz (A

0
) to 

4186 Hz (C
8
). 
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An Exercise 
 
 
 

What are the frequencies for the “just diatonic” major scale if the first one is 120 Hz? Be sure 
to be able to work these out using the ratio for each of the intervals. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

--- End of Chapter V --- 
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W. Woodwinds 
 

We now take up the study of the musical 
instruments. We consider in this chapter 
and the next two, the three main sections of 
the orchestra: woodwinds, brass, and 
strings. We choose this order because it 

corresponds to the manner in which they 
appear on an orchestral score of music. In 
the chapter on strings, we discuss 
percussion, which is also very important. 

 
Flutes 
 

1. Flute: The Physics. The flute is an 
open pipe. Fig. W-1 illustrates an orchestral 
flute. The player blows across the left end. 
It serves as one of the open ends of the 
pipe. The other open end is determined by 
which tone hole is open. The effective 
length of the open pipe changes. Fig. W-1 
leads us step by step in arriving at the 

length needed for a mid-range tone, E
4
. The 

value for the speed of sound at freezing 
temperatures is used to simplify the 
arithmetic. This is okay since we are after 
an approximate answer anyway. It is 
interesting to discover that the length is 
approximately 50 cm, a length that humans 
can carry. 
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2. Flute: Producing the Tones in the 
Scale. Twelve effective lengths of the pipe 
are needed to obtain the 12 tones in the 
chromatic scale. One length is achieved by 
using the far end of the open pipe. Then, 11 
tone holes are needed to produce shorter 
"effective pipe lengths" to obtain the other 
11 pitches. The orchestral flute has a few 
additional holes to make playing easier. 
The tone holes provide for notes within one 
octave. Driving the pipe to resonate at 
higher harmonics extends the range. Fig. 

W-2 illustrates an older flute (the recorder) 
and the orchestral flute. 

Many common variety flutes resemble 
the recorder. You blow into one end and 
use your fingers to cover holes. To open a 
hole, a finger is released. The number of 
holes needs to be reduced unless you have 
12 fingers. The author had a toy flute with 8 
holes in 5th grade. The additional tones in 
the chromatic scale could be produced by 
using the technique of covering half a hole. 

 
 

 
 
 

The source of energy for the flute is 
supplied by the jet of air made by the 
player. Blowing across the embouchure of 
an orchestral flute produces white noise. 
The pipe goes into resonance. Putting the 
mouth completely over the mouthpiece in 
the case of the recorder presents a 
problem. The air  stream travels straight 
through the tube like a straw, unless there 
is an edge with another opening to produce 
turbulence. The air flow coming into contact 
with the edge produces the resonance. 

The orchestral flute has a tuning plug 
that enables the player to slightly change 
the length of the flute. The change in pipe 
length shifts the frequency slightly. The 
resonance is affected by the blowing 
pressure, air-jet length, and area of lip 
opening. The player can control the sound 
level in this way. The pitch can either be 
slightly modified by these or drastically by 
exciting a higher harmonic. 
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3. Flute: Extending Musical Range. 
The flutist can also obtain higher pitches by 
carefully arranging for additional openings 
to encourage more nodes. This technique is 
called cross fingering. In Fig. W-3 there is 
an extra key pad raised. The node positions 
support a pipe resonance at the second 

harmonic (H2). Here 2 half-waves fit into 
the same length (lower diagram) compared 
to the one half-wave of H1 (upper diagram). 
This technique and the earlier ones 
mentioned allow coverage of the 3 octaves 
C

4
 to C

5
, C

5
 to C

6
, and C

6
 to C

7
. 

 
 

 
 
 

4. Flute: Synthesis. A flute-like sound 
can be synthesized using a sine wave (see 
Fig. W-4). The synthesized sound is 
approximate; however, not bad for imitating 
a toy flute. Improvements can be made by 

adding a little white noise to the sound to 
imitate breath and another oscillator to add 
a touch of the first overtone. These 
additions require more modules and a 
mixer.
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Clarinets 
 

1. Clarinet: The Physics. The clarinet 
mouthpiece is different from the flute. The 
player's mouth covers the end of the 
mouthpiece on the clarinet. Therefore, this 
end is closed. Fig. W-5 illustrates modeling 
the clarinet as a closed model. The reed 
vibrates, supplying the energy for the 
resonance. The effective length of the 
closed pipe is from the mouthpiece to the 
opening at the tone hole in Fig. W-5. The 
wavelength for the fundamental is given as 

4L for a closed pipe of length L since one 
quarter-wave fits along the pipe length. The 
fundamental frequency produced is one 
octave lower than that for an open pipe of 
the same length. Therefore, the E

4
 (330 Hz) 

we obtained with a 50-cm open pipe in the 
flute analysis now drops an octave lower to 
E

3
 (165 Hz) for a closed pipe of the same 

length. Details of the explicit calculation are 
found in Fig. W-5. 
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2. Clarinet (Fig. W-6): Producing the Tones in the Scale. For an 
open-pipe instrument, 11 tone holes and the 1 all-tone-holes-shut position 
cover the 12 notes of the chromatic scale. Higher harmonics are produced 
to reach into the next octave or two. 

There is a problem with a closed pipe since the next harmonic is the 
third harmonic, not the second. Therefore we need tone holes to span the 
notes from H1 to H3. Fig. W-7 illustrates the physics of tone holes for 
open and closed pipes. The total pipe length (all holes shut) is used for 
the lowest note. The tone holes are needed to fill in the notes in between 
H1 and H2 for open pipes, H1 and H3 for closed. 
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3. Clarinet: Extending Musical Range. 
The clarinetist gets assistance from a 
register hole to produce the third harmonic 
(see Fig. W-8). Cross fingering is also used 
to play in the higher octaves. The 
combination of these and blowing 
techniques enable the clarinet to extend to 

3 octaves. The common orchestral clarinet, 
the B-flat clarinet, easily spans the 3 
octaves D

3
 to D4, D4 to D

5
, and D

5
 to D

6
. 

The first note D
3
 is almost an octave lower 

than the flute's first note C
4
. 

 
 

 
 
 

4. Clarinet: Synthesis. To synthesize a 
clarinet-like sound, we first note that the 
clarinet functions, in our model, as a closed 
pipe. Closed pipes produce odd harmonics. 
The resonance in the lowest register 
consists mainly of the fundamental. To 

achieve a fundamental with some small 
presence of odd overtones, we use a 
triangle wave or square wave. The Fourier 
spectra for these contain only odd 
harmonics. 
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The Woodwind Choir 
 

The “choir of woodwinds” is shown 
below. in Fig. W-10. Think of this analogy 

with a choir of singers: flute (soprano), oboe 
(alto), clarinet (tenor), and bassoon (bass). 
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The oboe and bassoon have double reeds. 
This makes each function more like an 
open pipe rather than a close pipe. Fill in 

the circle of the appropriate choice for each 
below. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

--- End of Chapter W --- 
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X. Brass 
 

Early brass instruments were pipes of 
fixed lengths (see Fig. X-1). Today four very 
common brass instruments are found in the 
orchestra: the French horn, trumpet, 
trombone, and tuba. These each have a 
mouthpiece, cylindrical section, and bell 
end. 

The trombone externally extends to 
increase length, while the trumpet uses 
valves to include more internal pipe 
sections in the resonance. The French horn 
and tuba likewise use valves. Focusing on 
the trombone and trumpet will give us an 
understanding of the two different methods 
employed by the brass instruments to 
obtain different pipe lengths for different 
notes. 

Due to complicated effects, all 
harmonics are present for brass 
instruments; however, the fundamental is 
hard to access for typical use. For practical 
purposes, the player is restricted to the 
overtones (Fig. X-1) for a fixed-length pipe. 
Songs such as Taps were composed using 
just overtones for the older brass 
instruments. 

 

 
Trombones 
 

1. Trombone: The Physics. Fig. X-2 
illustrates how the restriction to one set of 
overtones is removed in the trombone by 

the slide. Pipe length is adjustable to obtain 
more tones.

 
Fig. X-2. Trombone. 
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2. Trombone: Producing the Musical 

Tones in the Scale. We have transposed 
the harmonics to fall on convenient notes in 
Fig. X-3. We choose H2 to be a "C" for the 

fully extended trombone. The length is 
reduced to fill in the notes of the chromatic 
scale between H2 and H3 indicated on the 
keyboard of Fig. X-3. 

 
Fig. X-3. Trombone Playing Positions. 
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3. Trombone: Extending Musical 

Range. In Fig. X-3 the extended positions 
increase the pipe length by our equal-
tempered 6%-"interest" amount. This drops 
the tone a half step each time. Note how 
the increments in length grow from position 
1 to 7. This is gaining "interest on interest." 
Think of the 7 positions as the capability to 
achieve 7 half steps. By blowing harder into 
the trombone, harmonic jumps are 

achieved. The playing positions are used to 
fill in the half steps from harmonic to 
harmonic. Fig. X-4 indicates how the 
number of half steps decreases as you go 
higher. Note that H7 is avoided. The 
trombone can reach 3 octaves in this way.  
The real trombone starts on an "E2," not a 

"C." 

 
Fig. X-4. “Hypothetical” Trombone (H2 on “C” for Position 7) Extending Its Range. 
 

 
 

4. Trombone: Synthesis. To 
synthesize a trombone-like sound we 
choose the "raspy" ramp wave (see Fig. X-
5). The ADSR shapes the filter and the 
VCA. The timbral change gives a 

characteristic brass "vah-rump" sound. The 
ADSR is varied to get the desired effect. 
The lower harmonics are emphasized due 
to the low-pass filter. 

 
 
Fig. X-5. Synthesizing a Trombone-Like Sound (Staccato Effect) 

 



Copyright © 2016 Prof. Ruiz, UNCA X-4 

Trumpets 
 

1. Trumpet: The Physics. The trumpet 
uses valves to increase the length of the 
pipe. Pressing a valve increases the 
internal pipe length (see Fig. X-6). When no 
valves are pressed, the trumpet has its 
minimum or base length. Valve 1, when 
pushed down, allows a pipe section to join 
the internal path, which increases the base 

length by approximately 12%. The three 
valves provide increases of 6%, 12%, and 
18%. These are multiples of our "interest 
rate" of 6%. They allow for frequency 
changes of a half step, whole step, and 
whole + half step respectively. Note that the 
smallest percentage increase goes with 
valve 2, the one in the center. 

 
 
Fig. X-6. Trumpet. 

 
 
 

Why 3 valves? We know from the 
trombone that a base length can give us H2 
and H3. So we need 6 additional playing 
positions to fill in the gap between H2 and 
H3. To reach these 6 half steps going down 
from H3, we need to increase the base 
length by (forgetting little extra gains by the 
"interest-on-interest" effect) 6%, 12%, 18%, 
24%, 30%, and 36%. 

The little additional percentages needed 
by the gain of "interest-on-interest" effect 
can be compensated by blowing technique. 
How can we obtain these 6 percentages 
with the minimum number of building 

blocks? The answer is 3, choosing as units 
6%, 12%, and 18%. You get 24% by adding 
the 6%-unit to the 18%-unit, 30% by 
combing the 12%-unit with the 18% unit, 
36% by adding all three units: 6% + 12% + 
18% = 36%. This is a very elegant 
application of basic mathematics and 
physics to instrument design. In practice, 
the 18%-unit is saved until you need 24%. 
To achieve 18%, the 6%-unit is combined 
with the 12%-unit. It gives a better match 
due to the ways the precise percentages 
are chosen in order to minimize the 
"interest-on-interest problem." 
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2. Trumpet: Producing the Musical 
Tones in the Scale. The trumpet has 7 
basic playing positions, like its cousin the 
trombone, to span the notes from H2 to H3. 
See Fig. X-7. The H2 on the keyboard 

corresponds to base length rather than full 
"extended" length as it did earlier for the 
trombone. We do this because Fig. X-7 is 
an actual trumpet. 

 
 
Fig. X-7. Trumpet Playing Positions. 
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3. Trumpet: Extending Musical 

Range. Blow the trumpet with no valves 
pressed (position "0") hard enough to 
obtain H3 (see Fig. X-8). Now press all 3 
valves (1-2-3) to lower the tone 6 half steps 
(which is roughly a 36% increase in length, 
6% per half step). This gives the note to the 
immediate right of H2 in Fig. X-8. 

Proceed to decrease pipe length by 6% 
each time to raise the pitch note by note to 
H3. Fig. X-7 gives these valve 
configurations, which decrease the length 
by 6% each time: 1-3 (total pipe length is 
30% beyond base length), 2-3 (24%), 1-2 
(18%), 1 (12%), 2 (6%), and 0 (0%). Now 

blow harder to get H4 (no valves used). 
You have skipped the tones between H3 
and H4. So we need to drop 4 half steps to 
get to the note immediately right of H3. This 
is 4 x 6% = 24% (increase in length), valve 
configuration 2-3. We then proceed with 6% 
decreases in length to march up to H4. 
These are 1-2 (18%), 1 (12%), 2 (6%), and 
0 (0%). Blow even harder with no valves 
and get H5. To get the 4 notes from the 
note after H4 to H5, we just need 1-2 (18% 
), 1 (12%), 2 (6%), and 0 (%). Then, blow 
harder to get H6. Can you figure out which 
configurations are next. If so, you know how 
to play the trumpet theoretically! 

 
Fig. X-8. Extending the Trumpet’s Range by Overtones and Values. 
 

 
 

4. Trumpet: Synthesis. The 
arrangement (Fig. X-9) is the same as that 
for the trombone except we use mid-range 
pitches. 

We obtain lower harmonics by 
employing the low-pass (LP) filter. 
Remember that the ramp wave is rich in 
harmonics. 

Fig. X-9. Synthesizing a Trumpet-Like Sound (Staccato Effect). 
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The Brass Choir 
 

The “choir of brass” is shown below. in 
Fig. X-10. Think of this analogy with a choir 
of singers: trumpet (soprano), horn (alto), 
trombone (tenor), and tuba (bass). The 

convention is to place the horn at the top 
even though the trumpet reaches higher 
notes. 

 
Fig. X-10. Brass Ranges. 
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An Exercise 
 
 

Give the number of tone holes or 
playing positions needed to span each of 
the intervals in the table below. Note that 
the last note in each span is obtained by 

blowing harder on the configuration of the 
instrument needed to obtain the lower 
harmonic listed for each span. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

--- End of Chapter X --- 
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Y. Strings and Percussion 
 

We now come to the application of 
strings in musical instruments. We begin 
with the violin family, the string section of 
the orchestra. Then we consider the guitar. 
The fundamental string physics we studied 
earlier applies to these. With the piano, 
strings get complicated. There is far more 
tension in the strings. The strings are stiffer, 
to some extent like a rod. Also, there are 
string wrappings about other strings for the 
lower tones. These features make the piano 
somewhat more complicated. Finally, we 
will briefly discuss drums and cymbals. 
 
The Violin Family 
 

The violin family brings us to the last 
major section of the orchestra. The first two, 
woodwinds and brass, deal with pipe 
physics. The violin and its cousins employ 
strings. In fact, the section of the orchestra 
with these instruments is called the string 
section or simply strings. Strings are 
employed the most by composers overall. 
The audience never seems to get tired of 
the nice blend of harmony strings offer. The 
woodwinds come second in use and the 
powerful brass last. The string family 
consists of the violin, viola, cello, and bass 
(also called the contrabass). Each member 
of the string family has 4 strings. We will 
consider the orchestral stringed instruments 
together. 

 
1. Violin Family: The Physics. The 

vibrating string supplies the basic physics of 
the violin family. The fundamental has a 
wavelength equal to twice the length of the 
string. One half-wave fits between the fixed 
ends for the first mode of vibration (see Fig. 

Y-1). The string has the same overtone 
series as the open pipe. 
 

 
 

The violin is usually played by drawing a 
bow across the string. This supplies the 
energy for the string to resonate. The 
interaction between bow and string 
generates predominantly the fundamental. 
However, a rich amount of overtones is also 
produced. The violin cavity and wood 
enable us to hear the sound easily. They 
also enhance the overtones that fall into 
formant regions. 

The overtones enrich the sound. 
Overtones are not used the way they are in 
woodwinds and brass instruments. There, 
one uses specific resonances of the higher 
harmonics. Playing the woodwinds at the 
fundamental mode is referred to as playing 
in the first register. Then, playing at the 
second harmonic by either cross fingering 
or using a register hole is called playing in 
the second register. You can carefully hold 
the center of a violin string gently and pluck 
it with your free hand. You will excite the 
second harmonic. But this is not done in 
practice. Instead, the violin has four 
separate strings to reach higher registers of 
pitch. 
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Fig. Y-2 illustrates the practical version 
of Fig. Y-1. The length of the string on the 
violin is compared to the length of a string 
on the bass (contrabass). The long string of 

the bass produces the low pitch we expect 
from a bass. This follows from Mersenne's 
First Law. 
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2. The Violin Family: Producing the 
Tones in the Scale. Different pitches are 
obtained on a violin by placing a finger 
along the string. This shortens the section 
of the string undergoing the vibration. See 
Fig. Y-3 for an example where the string is 
shortened to two-thirds its original length. 

The new fundamental has a shorter 
wavelength. The wavelength is scaled 
down to two-thirds of the original value. The 
violinist can move up the string in this way 
to produce the half steps of the chromatic 
scale. 

 
 

 
 
 

The ratio of 2:3 for the wavelengths in 
Fig. Y-2 corresponds to the interval of a 
fifth. Recall that whenever you shorten the 
wavelength, the frequency increases. The 

frequency ratio is 3:2. The numbers are 
reversed for the frequency. Pythagoras 
measured such string-length ratios for the 
consonant intervals (see Table Y-1). 
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3. The Violin Family: Extending 
Musical Range. Stringed instruments have 
more than one string to extend the range. 
See Fig. Y-4 for the four strings found on 
the violin (Vi), viola (Va), cello (Ce), and 
bass (Bs, or contrabass). The spacing 
interval is a fifth for the violin, viola, and 
cello. Three octaves are easily within reach 
this way. 

The frequencies get lower overall as the 
instruments go from violin to bass. The 
cello and bass have longer strings to 
produce bass notes. The strings get so long 
for the bass, it's too much of a stretch (of 
the arm) to play many different notes on 
one string. The smaller spacing of a fourth 
cuts down on the number of notes each 
string must be responsible for. 

 
 

 
 
 

4. The Violin Family: Synthesis. To 
synthesize a very approximate violin-like 
sound, we observe that the string is pulled 
by the bow due to friction, then quickly slips 
back, is pulled again, and slips back, etc. 
like a ramp wave. A ramp wave is chosen 
for synthesizing bowing in Fig. Y-5. A 
gradual attack is employed for 
approximating a gentle approach of the 
bow. An abrupt release is used to 
reproduce a sudden release of the bow. Of 
course, the violin need not be played this 

way. We are only choosing one of the many 
characteristic ways to play the violin. One 
serious limitation of our synthesis is the lack 
of enhanced overtones that occur in the 
violin due to the formants. 

On the other hand, it is relatively easy to 
approximate the plucking sound of a bass 
(see Fig. Y-6). The plucking of the string 
produces a sound much closer to a sine 
wave than bowing. The formants aren't as 
important then, since the sine wave has no 
overtones. 
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An orchestra typically has 30 violins, 
divided into two sections, the first and 
second violins. There are approximately a 
dozen violas, a dozen cellos, and eight or 
ten cellos. The strings blend so well 
together due to their similar structure. They 

are used most of the time in musical 
compositions. The strings can be employed 
for long lengths of time because the 
performers do not get tired easily. 
Woodwind and brass players need to 
occasionally "catch a breath." 
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The String Choir 
 

Fig. Y-7 illustrates the string choir of the 
orchestra. Think of this analogy with a choir 

of singers: violin (soprano), viola (alto), 
cello (tenor), and bass (bass). 

.  
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A Review 
 
 
 

 
 
 
 

What is the harmonic number n for the wave shown in the photo?  __________ 
 
 

b. How many half-waves are there in the above photo?  __________ 
 
 

c. How many half-waves are there in harmonic 2?  __________ 
 
 

d. How many half-waves are there in harmonic 1?  __________ 
 
 

e. How many nodes are there in harmonic 8?  __________ 
 
 

f. How many antinodes are there in harmonic 8?  __________ 



Copyright © 2012 Prof. Ruiz, UNCA Y-8

Guitars 
 

The guitar is one of the most popular 
instruments. It is light, portable, and offers 
excellent accompaniment to singers. It is 
used for classical, popular, folk, country, 
and rock music. Popularity soared in the 
1950s with the fame of Elvis Presley and 
continued in the 1960s due to early rock 
groups such as the Beatles. The acoustic 
guitar is not electric. The sound is brought 
out by the body, cavity, and sound hole. 

See Fig. Y-8. The energy is supplied by 
plucking or strumming. The strings 
resonate. The vibrations are transmitted to 
the body by the bridge. The wood and 
cavity enable us to hear the sound. Their 
formant regions enhance some of the 
overtones. Tuning pins allow for control of 
tension. According to Mersenne's Second 
Law, greater tension produces higher pitch. 

 
 

 
 
 

The guitar has frets (ridges) which 
enable the performer to easily find the 
correct positions to effectively shorten the 
strings for specific tones. Fig. Y-9 illustrates 
the spacings for the frets. Each step from 
fret to fret is a half step. We use our 
banking analogy with an investment interest 

of 5.9%. We start at the far right and move 
leftward. In this way, the far left-fret position 
gives the lowest frequency. This is an 
outcome of the inverse relation between 
frequency and wavelength we analyzed in 
the last section. 
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Artisans crafting stringed instruments 
with frets over the centuries discovered a 
simple guideline in spacing. They started 
construction at the end near the tuning pins 
and placed each fret at 1/18 the distance of 
the remaining section of string. After you 
construct a fret, you forget about the string 
to the left (using the orientation in Fig. Y-8). 
You measure from the last fret you finished 
to the bridge. Then proceed to the right 
1/18 of this new distance and install the 
next fret. Since the remaining string 
distance keeps shrinking, the distances 
between the frets get smaller and smaller. 

We can arrive at this rule from theory. 
Pick any fret in Fig. Y-8. The distance from 
the fret to the bridge represents our savings 
according to Fig. Y-9. By moving to the right 
from any fret, we reduce the length of the 
string, or go back in time for our investment 
analogy. This means we lose some interest. 
How do we take interest away? First, let's 
find out what the applied interest is as a 
fraction. The value 5.9% is about 1/15 or 
1/16 as we approximated it earlier from the 
just diatonic scale. But we must be more 
precise now. We are no longer working with 
the just diatonic scale but the equal-
tempered scale. 

The decimal corresponding to 5.9% is 
0.059, just like 50% corresponds to 0.50. 

The fraction 1/16 = 0.0625 is too large. The 
better fraction is actually 1/17 since 1/17 = 
0.0588 (very close). When we proceed into 
the future (moving from the bridge to the 
tuning pins) we increase our length by 1/17 
year by year. Fix your attention on any fret. 
The next fret to the left increases the 
effective string length by 1/17. The new 
longer string length is now 18/17 (the 
original 17/17 plus the extra 1/17). Now to 
go backwards, we need to make a cut from 
18/17 to 17/17. If we start with 18/17, in 
order to get 17/17, we need to cut off 1/18 
of the 18/17-length. We amazingly arrive at 
the 1/18-rule. This is a subtle use of 
arithmetic to arrive at a "golden rule" of 
guitar design. 

The guitar extends its range with the 
help of additional strings. The 6 strings, 
along with the total range for the guitar, are 
illustrated in Fig. Y-10. There is also a 12-
string guitar. Other plucked instruments 
include the dulcimer (American folk version 
has 3 or 4 strings), banjo (4 or 5 strings), 
lute (4 or more strings), sitar (7 or more 
strings), zither (30 to 40 strings), and harp 
(almost 50 strings). All except the harp 
have frets. The harp is also unique in that it 
is considered a standard instrument in the 
symphony orchestra even though it is not 
used in many works. 
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We saw earlier that a sine wave can be 
used to synthesize the plucking of a bass. A 
square wave provides for a richer sound, 
more comparable to what we hear on a 
guitar or banjo. Fig. Y-11 illustrates a 
modular diagram to synthesize such a 
sound. The resulting sound is more like that 
of a banjo. The best results use a waveform 

between a square wave and a pulse train. 
Square waves have crests that are 50% of 
the total waveform. The best results are 
found with crests between 10% and 25%. 
Increasing the pulse in the range between 
25% and 33% produces a harpsichord 
sound. 

 
 

 
 
 

Fig. Y-12 shows some waveforms with 
different pulse widths. The pulse width 
compared to the wavelength is called the 
duty cycle. A square wave has a duty cycle 
of 50%. The pulse train has a theoretical 

duty cycle of 0%. The Fourier spectra for 
the 20% and 33% cases below are more 
complicated than those for the pulse train 
and square wave, which we have 
encountered earlier. 
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The electric guitar amplifies sound by 
electromagnetic pickups. Fig. Y-13 
illustrates the procedure. The metallic 
strings vibrate near coil-magnet 
assemblies. The string is not attached to 
the coil. However, the metal string 
influences the magnetic field inside the coil 
as it gets near it, due to the presence of the 
pickup's permanent magnet. The fluctuating 
magnetic fields are in step with the vibration 
of the string. These generate electrical 
currents in the coil. The electrical signal is 
sent to an amplifier inside the guitar. The 
internal amplifier is a preamplifier, whose 
output goes to the regular amplifier for 
driving the speakers. 

There are usually two sets of pickups. 
Each set contains 6 pickups, one for each 
string (electric bass guitars have 4 strings). 
The upper set picks up mostly the 

fundamental while the lower set registers 
overtones better. The combination of the 
two signals gives the resulting sound. The 
acoustic body is not needed. This method is 
superior to attaching a coil gently to the 
wood surface to pick up vibrations. Such 
pickups are called pressure transducers. 
Pressure variations are converted into 
electrical signals. The wood plays the role 
that the diaphragm does in a microphone in 
such an arrangement. The electric guitar 
does not use such body vibrations. 
Therefore its outside design has evolved 
into something quite different from the 
acoustic guitar. The development of the 
modern electric guitar goes back to the 
work of musician-inventor Les Paul in the 
1940s. The manufacturer Gibson worked 
with Les Paul in the 1950s to produce top-
quality electric guitars. 
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The Piano 
 

Hammers strike the strings in a piano. 
The piano (see Fig. Y-14) is considered a 
percussion instrument. The strings are 
under great tension. A tuning instrument is 
needed to change the string tension. A 
lower string consists of a metal string 
wound on another metal piece. The lower 
notes have one string, middle tones have 
two, and the highest strings have three. The 
strings get shorter (Mersenne's First Law) 
and thinner (Mersenne's Third Law) toward 
the top. 

The middle octave is tempered equally. 
Then other strings are tuned by octaves. 
Piano strings present some tuning 
challenges. Piano strings are thicker in 
order to withstand the greater tension. Such 
strings lose some flexibility and begin to 
behave to some extent like metal rods. The 
higher modes of excitation for a metal rod 
do not correspond to the overtone series of 
strings and open pipes. Therefore, the 

second harmonic of the piano string falls a 
little beyond twice the frequency of the 
fundamental. To avoid having the note an 
octave higher beat with the slightly-raised 
second harmonic of the lower octave, the 
piano tuner stretches the tuning of the 
higher octave. The higher octaves on the 
piano get tuned slightly sharper and 
sharper, the lower octaves flatter and 
flatter. 

It is apparent that a tuning expect is 
needed. Pianists do not tune their own 
pianos unless they happen to be piano 
tuners also. The piano was invented (early 
1700s) since its precursor, the harpsichord, 
played over a very limited range of 
loudness (dynamics). The new instrument 
was called the pianoforte (soft-loud). The 
research and development by Steinway in 
the 1800s contributed significantly to the 
modern piano of today. 
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Drums and Cymbals 
 

Drums are vibrating membranes. The 
two-dimensional surface of a membrane is 
much more complicated than the narrow 
string or pipe, both of which can be 
considered as one dimensional. The 
kettledrum is illustrated in Fig. Y-15. A set 
of 2, 3 or 4 usually make up the timpani in 
an orchestra. Each is tuned to a pitch. The 
membrane produces the pitch. The cavity 
below enhances the sound. The inside is 

not slender like a pipe, but wide. Therefore, 
thin-pipe physics does not apply. In thin 
pipes, standing waves are set up; in wide 
containers, the mass of air swishes around. 
The result is a characteristic low-emphasis 
of frequencies (see Fig. Y-16). This jar-type 
of resonator is called a Helmholtz 
resonator, which we encountered earlier in 
discussing speaker design. 
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Other drums do not produce a pitch. 
See Fig. Y-17 for examples of such drums. 
These drums produce broadband noise. 

The cymbals produce a concentration of 
high-frequency noise. 

 
 

 
 
 

Fig. Y-18 illustrates a modular-
synthesizer arrangement to produce band 
drums. A low-pass or high-pass filter can be 
used to highlight the lower or higher 

frequencies accompanying large or small 
drums. No filter-tracking should be 
employed since the keyboard is only used 
as a trigger for the ADSR. 
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The cymbal produces a crash. The 
sound changes rapidly. A sweeping filter 
produces changes in the spectrum of a 
sound. Fig. Y-19 employs a sweeping filter 
to simulate a fleeting change in the 
broadband spectral characteristics of the 

noise. Better control can be achieved with 
two ADSR units, where one sweeps the 
filter while the other shapes the amplitude. 
However, the spirit of our modular diagrams 
is to assume we have one of each unit to 
work with. 
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Some Exercises 
 
 
 

 
 
 
 
Answer below either true or false for synthesizing a cymbal sound. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

--- End of Chapter Y --- 
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Z. Circle of Fifths 
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Consonance 

 
 Fig. Z-1 below shows the most 

consonant intervals after the 1:1. The best 
blend is the unison, where you compare a 
note with itself, i.e., the 1:1. The next best is 

the octave with its 2:1 ratio: you go from Do 
to "Do junior," the beginning of the next 
generation. So this is still in the family. The 
first outside one's family is the fifth (3:2). 

 
Fig. Z-1. Consonant Intervals. 
 

 
 

This is the secret behind the circle of 
fifths. You move by a fifth each time. Most 
of traditional western music moves by a 
fifth. The same goes for popular music and 
jazz. 

 

The Basic Idea of the  Circle of Fifths 

 
The circle of fifths, also called the cycle 

of fifths, is the key to understanding 
harmonic changes. You move by a fifth 
from Do to Sol harmonically. Then you 
consider Sol your starting point and move a 
fifth again. You continue in this fashion. It is 
like moving from your Facebook page to 
your friend's page. Then you go to a friend 
of your friend. We shortly discover which 
degrees of the scale mark the addresses of 
these Facebook members. First though we 

analyze an argument your instructor had 
with a jazz musician. 

Many years ago your instructor got into 
an argument with a jazz musician who 
insisted that the best harmonic changes 
followed the circle of fourths and not fifths. 
The argument became quite intense. But 
then your instructor reasoned that his 
musician friend must be right too. How can 
both be right? Your instructor finally 
discovered the answer. 

See Fig. Z-2. If you go up a fifth from the 
middle note labeled 1, you get to the 5th 
degree of the scale. But if you go down a 
fourth, you get to the 5th degree of the 
scale in the octave lower. 

So moving up by a fifth is equivalent to 
moving down by a fourth. In either case you 
get to the 5th degree of the scale. 

 
Fig. Z-2. The Fifth and the Fourth. 
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Be careful here that when you move by 
a fifth that you count 7 half steps. When you 
move by a fourth, you count 5 half steps. 
Here is a mathematical proof that moving 
up by a fifth is the same as moving down by 
a fourth. Start with 120 Hz so that we can 
work with a specific frequency. Then your 
fifth higher is (120) 3/2 = (60)(3) = 180 Hz. 
If you go down a fourth, you need to deal 
with the 4:3 ratio in some way. Going down 
means we use 3/4. Therefore, (120)(3/4) = 
(30)(3) = 90 Hz. But this is an octave lower 
than 180 Hz. Therefore, we are on the 
same degree of the scale, a Sol in each 
case. 

Here's a more abstract version. Go up a 
fifth means 3/2. Go down a fourth means 
3/4. But this latter one is an octave lower. 
Why? Double it and you find 2(3/4) = 3/2, 
the higher Sol. So both the lower and 
higher notes are Sols. Remember the 
importance of seeing things from more than 
one vantage point. 

 

A Portion of the Circle of Fifths 

 

Start on the 1 in the large keyboard of 
Fig. Z-3 and count 7 half steps to arrive at 
the 5. Use the cute small keyboard as a 
reference to identify the degrees of the 
scale. Keeping counting by 7 half steps to 
get all the cases but cheat in going from 7 
to 4 making that only 6 half steps, i.e. the 
tritone. We do this so that we can finish up 
with the 1 with a total of eight numbers. So 
we break the cycle between 7 and 4 to pull 
this off. Note that the last interval (4 to 1) is 
a fifth. We do the break because popular 
songs are typically written in groups of 4 
units called measures. So now we have two 
such units. Read the numbers backwards 
and you get the two units: 1-4-7-3 and 6-2-
5-1. When you repeat this, the 1 appears 
twice in a row: 1-4-7-3-6-2-5-1-1-4-7-3-6-2-
5-1-1. Remember this by the phone number 
473-6251 and note that you stay on the 1 
for twice as long. 

Fig. Z-3. Portion of the Circle of Fifths. 
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The Full Circle of Fifths 
 

The full circle of fifths is given in Fig. Z-4 
with letters. The musicians like to use a 
circle with labels of the twelve unique notes 
of the keyboard. Don't worry about the 
letters. Some of these will be our black 
keys. We cheat in going from the 7 to the 4. 
That is powerful enough to analyze so 
many songs as we do in class. See Fig. Z-5 
for a map analogy. 
 
Fig. Z-4. Circle of Fifths and Our Portion. 
 

 
 

Note that the subsection we pull out, 
which has to have the tritone splice (7-4) is 
our 4-7-3-6-2-5-1. Part of this is 6-2-5-1 and 
a part of the latter is 2-5-1. Some of the 
songs we analyze need only these parts. 
The larger cycle is like a powerful physics 

formula and the smaller pieces are simple 
components of the master rule. 
 
Fig. Z-5. Map Analogy: Traveling to Friends 
of Friends. 
 

 
 

We need to stress that these 
movements by fifths musically refer to the 
harmony and not the tunes. The great 
Russian composer Rimsky-Korsakov 
(1844-1908) pointed out the importance of 
orchestrating a harmony with a blend of 
compatible notes. These are often chosen 
from the harmonics that go with the root or 
base note. 

So what was Rimsky-Korsakov referring 
to when he wrote in his Principles of 
Orchestration that "the resonances of 
different harmonic parts must be equally 
balanced." Of course, physics! 

 
 
 
 
 
 
 
 
 
 
 
 
 

--- End of Chapter Z --- 



Appendix: Harmonic Mysteries 
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Glossary for Physics of Sound and Music (Ruiz) 
 

Version March 9, 2020 

 
acoustic guitar – musical instrument made of wood with 6 strings, frets, and a sound cavity 
 
acoustic traumatic notch – an audiogram with a hearing loss where the loss is only in a small 
band of frequencies – thus the dip in the audiogram plot (graph), an upside-down V-notch 
 
acoustical – relating to sound 
 
acoustic waves – sound waves traveling in air, fluid, or solid 
 
acoustics – the study of sound 
 
ADSR – see envelope generator 
 
alternating current (AC) – current that flows back and forth in a wire or circuit element 
 
Ampère’s law – electrical current through a coil produces a magnetic field inside the coil 
 
amp (also ampère) – the unit for current; amp is abbreviated as A 
 
amplifier – device that increases the amplitude of an electrical wave 
 
amplitude – the measure of the wave strength from the equilibrium (center line) to the highest 
point of a wave. Sometimes engineers like to measure from the very bottom to the very top 
and thus obtain twice this value. To avoid confusion we refer to the later as “anti-peak-to-peak” 
amplitude or simply as “peak-to-peak” amplitude. Do not confuse this with measuring 
horizontally from one peak to the next, in which case you obtain the wavelength. 
 
amplitude modulation (AM) – the change of the amplitude of a wave 
 
analog signal – a signal that can take on any numerical value between its minimum and 
maximum values 
 
AND – the result for Y = A · B with Y = 1 only if both A = 1 and B = 1 
 
antenna – a metallic structure (can even be a single wire) used for the purpose of picking up 
an electrical signal. The incoming electromagnetic wave makes electrons in the antenna 
wiggle in step with the incoming wave. 
 
antinode – a place on a wave that undergoes maximum change, e.g., displacement antinode 
means maximum changes in displacement (movement) at that point; pressure antinode (in a 
pipe) means maximum changes in pressure 
 
antiskating force – the force that a little spring exerts outward on the bent record player arm so 
that the arm is not pulled in to the center of the record as the record is played 



 
anvil – the middle bone in the middle ear 
 
aperiodic – not periodic 
 
Armstrong, Louis – famous historical jazz trumpet player 
 
attack – the time for the sound to reach a maximum level from its start. A short or abrupt attack 
is characteristic of an explosive or plucking sound. 
 
audio in – phrase used to describe the input audio signal in electrical form entering a circuit 
section or module 
 
audio out – phrase used to describe the output audio signal in electrical form leaving a circuit 
section or module 
 
audio signal – electrical signal that when sent to an amplifier and speaker can be heard 
 
audiogram – a medical record of an ear’s ability to hear where hearing threshold in dB is 
plotted along the downward vertical axis and frequency along the horizontal axis at the top of 
the plot 
 
audiology – the study of speech and hearing loss 
 
auditory – pertaining to the perception of sound 
 
auditory nerve – the “biological wire bundle” through which electrical signals are carried to the 
brain from the organ of Corti 
 
aural harmonics – harmonics introduced by the ear due to distortion of the original waveform if 
the original sound is too loud or if there is some imperfection in the ear/brain system 
 
Autumn Leaves – song from 1930s serving as our signature song in a minor key for the 4-7-3-
6-2-5-1 progression in a minor mode or key 
 
Bach, Johann Sebastian – baroque composer, master at using the cycle of fifths 
 
balanced modulator – a device that accepts two sine waves as input and then sends out two 
sine waves, but one with the sum frequency and the other with the difference frequency 
 
balanced modulation – process whereby the sum and difference frequencies of two sine waves 
are produced 
 
baffle – a barrier with a hole in it so that a speaker can be inserted, thus preventing the out-of-
phase waves leaving the rear from destructively interfering with the waves leaving the front of 
the speaker 
 
bandpass filter – a filter that passes frequencies from some lower limit to some higher limit 
 



bandwidth – the difference of the maximum frequency and minimum frequency that defines the 
range of permitted frequencies in a bandpass filter 
 
Baroque Period –  period in European music from 1600-1750 characterized by grand long 
melodic lines 
 
Bartók, Béla – modern Hungarian composer who lived in Asheville for 3 months due to health 
reasons, use of notes spaced by fifths to obtain an eerie beautiful sound 
 
basilar membrane – membrane of length 3.5 cm in the cochlea on which sits the organ of 
Corti, which organ detects sound waves. The basilar membrane has varying degrees of 
stiffness, increasing as one nears the oval window. The membrane responds by resonance 
where the higher the frequency of the incoming sound wave, the closer to the oval window the 
sound is detected. Each octave corresponds to 3.5 mm and we can hear 10 octaves. 
 
bass – low frequencies; also, the stringed instrument that produces the lowest pitches in the 
string family 
 
bass control – amplifier control for low-pass filter so that you can adjust the strength of the 
lower frequencies 
 
bassoon – a woodwind instrument that acts as an open pipe and has the lowest musical range 
of the four common woodwinds: flute, oboe, clarinet, and bassoon 
 
battery – a device that separates plus and minus charges inside it and thus can produce a 
direct current when inserted in a circuit 
 
beats – the pulsations that occur when two waves have nearly the same frequency 
 
beat frequency – the pulsation frequency that occurs when two waves have nearly the same 
frequency. The beat frequency is given by the difference of the frequencies. The frequency of 
the actual tone undergoing the pulsations is given by the average of the frequencies of the two 
original waves. 
 
Beethoven, Ludwig van –  a transition composer that bridges the classic and romantic periods 
in music. He helps usher in the romantic period with music heroic in proportion. 
 
bel – a unit of sound level (loudness) 
 
bell jar – jar used to place a bell inside and pump out the air so that no sound can be heard. It 
is used to demonstrate that sound needs a medium to travel through while light does not (since 
you can see the bell when there is no air inside the jar). 
 
Berlioz, Hector – romantic French composer who wrote his Symphonie Fantastique as sexual 
sublimation for his beloved Harriet Smithson since she rejected him. What happened after she 
heard the symphony? He introduces the Dies Irae them in the 5th movement of his symphony, 
which movement is called Dream of a Witches' Sabbath. He also includes Church bells, an 
example of inharmonicity. 
 



Bernstein, Leonard – conductor who invited Louis Armstrong and other black musicians in the 
mid 1950s to perform St. Louis Blues with composer W. C. Handy and his wife in the audience. 
Bernstein also discovered the black pianist André Watts from Philadelphia. 
 
Berry, Chuck – a prince of rock 'n roll, whose Mabellene (1955) neutralizes the blues with all 1-
chords off and on throughout the piece 
 
binary – two-valued, either 0 or 1, true or false 
 
binary number – a number using 1s or 0s such as 1101, where reading from right to left you 
have 1s, 2s, 4s, 8s, etc. Therefore 1101 is equivalent to 1(8) + 1(4) + 0(2) + 1(1) = 13. 
 
binaural beats – beats perceived in the brain when two pitches close in frequency are played 
separately into each ear low in volume to avoid bone conduction. The beats are still perceived 
in the brain even though there are no physical beats present. The waves do not mix in space, 
but only in the brain. 
 
binaural effects – perceptual sound effects possible since we have two ears such as the 
perception of sound direction 
 
blue noise – high-frequency noise 
 
blues – song following the pattern of 12 sections (measures or bars) with harmonic content 1-
4-1-1, 4-4-1-1, 5-4-1-1 where substitutions for harmony are allowed. 
 
blues scale – a scale of six notes developed to blend well with the blues harmonic chord 
progression 
 
Brahms, Johannes – romantic composer, study orchestration with Robert Schumann, lived 
with the Schumanns for a time, Uncle to the Schumann kids, composer of the Academic 
Festival Overture 
 
brass – the orchestral instruments made of metal based on open-pipe physics. The four brass 
instruments of the orchestra are the French horn, trumpet, trombone, and tuba. 
 
bridge – on a guitar, the place where the strings are fastened opposite to the end that contains 
the tuning pins 
 
brilliance – term in acoustics when reverb is present for high frequencies but not much is there 
for low frequencies 
 
broadband noise – white noise 
 
Can't Take My Eyes Off You – song from 1960s serving as our signature song in a major key 
for the 4-7-3-6-2-5-1 progression. The mid section uses the progression. 
 
capacitor – electrical component (in its basic design, two plates) that can store electricity 
 
Carlos, Wendy – renown musician on the synthesizer. Her record “Switched-On Bach” which 
used the Moog Synthesizer in the late 1960s created a sensation. 



 
carrier wave – the wave upon which a modulation is applied 
 
cartridge – name given to record player component, fitting at the end of the arm, that translates 
the mechanical vertical motions of the stylus into electrical signals via the Faraday principle. 
The cartridge consists of the stylus at its bottom and two tiny magnets that can move inside 
coils at the top. 
 
cello - the instrument in the orchestral string family that has a lower musical range compared to 
the viola but a higher one compared to the bass 
 
Classic Period in Music - the time from roughly 1750 - 1800. The music, in contrast to the 
grand baroque period that preceded it, is known for its Simplicity, Order, Balance, elegance, 
and Restraint (SOBER). Two of its major composers were Haydn and Mozart. 
 
CD – a compact disc 
 
CD player – a device that converts binary data on a CD in the form of pits into sound using 
laser light to reflect off the pits 
 
charge – an electrical plus or electrical negative 
 
chord – the dressing up of a degree of the scale so that you obtain a harmonic group of tones 
to accompany a melody. Chords can be labeled such as the 1-chord, meaning a chord built on 
the first degree of the scale. The simple major chord is built using Do-Mi-Sol simultaneously – 
a triad. When you add a low bass note (H1), then Do-Mi-Sol become H4, H5, and H6 relative 
to your H1. Think of chords are including harmonics that go with a given degree of the scale. 
 
chorus effect – the effect whereby a group of sound sources are producing the same sound, 
e.g., singers in a choir singing the same song 
 
chromatic scale – the equal-tempered twelve-tone scale 
 
circle of fifths – same as cycle of fifths 
 
circuit – an electrical system with wires and electrical components 
 
circuit element – an electronic component of an electrical system. The basic circuit elements 
are the battery (V), bulb (B), resistor (R), capacitor (C), coil or inductor (L), transistor (T), and 
diode (D). 
 
clarinet – a woodwind instrument that acts as a closed pipe and has a lower musical range 
than the oboe and a higher musical range than bassoon 
 
clarity – term in acoustics for little overall reverb 
 
closed pipe – a pipe closed on one end and open on the other where we designate the pipe 
length as L. The natural modes of the longitudinal vibrations are the odd harmonics and they 
have frequencies f1, 3f1, 5f1, etc., where f1 is the frequency of the first harmonic (fundamental). 

The corresponding wavelengths are 1 = 4L, 3 = 4L/3, 5 = 4L/5, and so on. For each 



frequency f and its associated wavelength the wave relation is always true: v =  f, where v is 
the speed of waves in the medium inside the pipe, the medium usually being air. 
 
cochlea – the coiled region of the inner ear than contains the auditory detection mechanism 
 
coil – a wire wound in the form of circles forming a cylindrical structure with empty space inside 
 
colored noise – noise resulting after white noise is passed through a filter 
 
Coltrane, John – jazz saxophonist from North Carolina who brought a modern dissonant 
"Stravinskyesque" sound to jazz. An example is his version of the Rodgers and Hammerstein 
My Favorite Things, which inspired the Doors for their improvisational section to Light My Fire. 
 
compact disk – CD, a disk that contains digital information such as audio, video, text, images, 
etc. 
 
complex periodic wave – any periodic wave that is not a sine wave 
 
compression – a squeezing together of the medium in a longitudinal wave, analogous to the 
crest of a transverse wave 
 
consonance – pleasing combination of tones. The five most consonant intervals in order from 
most consonant to least are 1:1 (unison), 2:1 (octave), 3:2 (fifth), 4:3 (fourth), 5:4 (third). 
 
constructive interference – interference where the crest of one wave lines up with the crest of 
the other and so do the troughs. We obtain a bigger wave and the waves are said to be in 
phase. 
 
contrabass – the bass stringed instrument, also simply called bass 
 
control voltage – voltage used to control a synthesizer module 
 
Coulomb’s law – like charges repel, unlike charges attract 
 
crescendo –musical term for a gradual increase in loudness 
 
crest – the part of a wave above the “sea level” reference line of the wave 
 
current – the flow of electricity 
 
cutoff frequency – the frequency in a filter which determines whether a signal can pass through 
a filter or not 
 
cycle of fifths – the movement by fifths through the 12 notes in the scale. Songs typically use 
portions of the cycle. 
 
cymbals – metallic plates slightly conical that crash together producing noise with a strong 
presence of high frequencies 
 
damped wave – a wave that reduces its amplitude to zero as time goes on 



 
damped harmonic motion – harmonic motion that decreases in amplitude such that eventually 
the motion stops 
 
decay – the time it takes for the sound to drop in amplitude after the attack phase until it 
reaches the sustain level 
 
decrescendo – musical term for a gradual decrease in loudness 
 

De Morgan’s Theorems – First Theorem: A B A B   , which translates as NOT(A AND B) 

equals (NOT A) OR (NOT B), Second Theorem: A B A B   , which translates as NOT(A OR 
B) equals (NOT A) AND (NOT B)  
 
dbx compander – tape circuit that compresses the signal strength when recording so that the 
100-dB dynamic range is squeezed into 50 dB in order for the tape to handle it – then on 
playback, the circuitry expands the signal to achieve the full 100-dB dynamic range. Otherwise, 
the limited magnetic tape cannot faithfully produce a range of 100 dB on its own – you would 
reach a saturation point similar to an “overexposure” in photography. 
 
Debussy, Claude – French impressionistic composer who composed the orchestral work La 
Mer (The Sea) 
 
deci – the metric prefix for 1/10, e.g., a decibel is 1/10 of a bel 
 
decibel (dB) – a measure of the loudness of a sound equal to 1/10 of a bel 
 
decibel Scale – scale where a tenfold increase of sound sources translates to an additional 10 
dB on the decibel scale and a twofold increase in sound sources results in an additional 3 dB 
on the decibel scale 
 
degree of the scale – the location of the note in the major scale where Do is 1, Re is 2, Mi is 3, 
Fa is 4, Sol is 5, La is 6, Ti is 7, and Do’ is 8. 
 
delayed light – a circuit that allows a light bulb to stay on for a short time after you release the 
switch 
 
demodulator – a circuit section that extracts the transmitted information contained in the 
modulated carrier wave  
 
destructive interference – interference where the crest of the first wave lines up with the trough 
of the second and the trough of the first lines up with the crest of the second, thus canceling 
each other out. The sum wave is zero. The waves are said to be out of phase or 180 degrees 
out of phase. 
 
devil’s tone – a tritone interval, so called because of the perceived tension in the sound of the 
interval. A tritone is often used in the harmony of the 5-chord to heighten the tension to resolve 
to the 1-chord. 
 



diatonic scale – the  just diatonic scale, i.e., the major scale tuned to perfect ratios – Do (1:1), 
Re (9:8), Mi (5:4), Fa (4:3), Sol (3:2), La (5:3), Ti (15:8), Do’ (2:1) 
 
Dies Irae (The Day of Wrath) – the haunting Medieval theme in a minor key inspired by the 
Biblical Day of Judgment 
 
digital sampling rate – the rate at which one samples the value of signal. For CD quality, the 
sampling rate needs to be approximately double the highest frequency we can hear. Therefore 
the sampling rate used is 2 x 20,000 Hz = 40,000 Hz = 40 kHz. 
 
digitize – to convert analog information into digital information (strings of 1s and 0s) 
 
diffraction – the bending of a wave due to passing through an opening, around a corner, or 
around an obstacle. The opening or obstacle size must be comparable to the wavelength of 
the wave. 
 
dimmer circuit – circuit with a battery, light bulb, and resistance arranged in a single loop. The 
bulb glows dimmer due to the presence of the resistor. 
 
diode – a circuit element that allows electricity to pass only in one direction 
 
direct current (DC) – current that flows in one direction in a circuit section 
 
discrete signal – a signal that can only take on specific values between its minimum and 
maximum value. When the unit increments are really small, the signal appears to be 
continuous (analog). 
 
displacement – change in position, e.g., when the medium is moved away from its natural 
position (equilibrium) forming a crest (above equilibrium, i.e., positive displacement) or trough 
(below equilibrium, i.e., negative displacement) 
 
displacement antinode – a place where maximum movement of the medium occurs 
 
displacement node – a place where no movement of the medium occurs 
 
dissonance – the opposite of consonance 
 
Dolby – the system by which you boost the higher frequencies when you record on a cassette 
tape (Dolby recording filter) and then you play the tape back through a filter that reduces the 
higher frequencies back to normal (Dolby playback filter). The playback filter also reduces the 
annoying high-frequency hiss that is characteristic on playback without the filter. 
 
Doppler effect – the change in pitch due to the relative motion between the sound source and 
the observer. The pitch is higher when the source and observer approach each other and the 
pitch is lower when the source and observer move away from each other. 
 
driven oscillation – an oscillation resulting from an agent (driver) forcing a system to oscillate. 
The system being driven (the “drivee”) oscillates at the same frequency as the driver but the 
amplitude of response depends on the frequency. 
 



drum – percussive instrument with a vibrating membrane, i.e., a vibrating two-dimensional 
surface, producing a noise with an abrupt attack. A kettledrum also includes a tuned pitch 
since the cavity of the drum in this case acts as a Helmholtz resonator, i.e., encouraging the air 
mass to swish around and produce a low-pitch tone. 
 
duty cycle – the percentage of the wavelength taken up by the width of a rectangular crest or 
pulse. A pulse wave with a 50% duty cycle is a square wave; a pulse wave with a small duty 
cycle is a pulse train wave. 
 
dynamic range – the range of loudness from softer to louder sounds 
 
dynamics – range of loudness or capability to produce on a musical instrument or electronic 
system both soft and loud sounds 
 
eardrum – membrane that vibrates when sound enters the ear, serving as the boundary 
between the outer and inner ear 
 
earplug – small padded material placed in the outer ear to decrease the sound level. Good 
ones can decrease sound levels by 30 dB and more. 
 
echo – the reflection of sound from an object or surface 
 
echolocation – locating objects by reflecting sound waves off the objects. A bat sends out high-
frequency sound waves that reflect off objects and then return to the bat. 
 
electric field – force field due to the presence of a charge. If the charge is positive, then the 
force field is such that a negative charge will be pulled in towards the positive charge and a 
positive charge will be repelled. The force field gets weaker as you move farther and farther 
away from the charge. 
 
electric guitar – guitar that employs the Faraday principle to convert the vibrating metallic 
strings into electrical signals that are then amplified and sent out through speakers 
 
electrical force law – Coulomb’s law: like charges repel, unlike charges attract 
 
electricity – moving charges 
 
electricity and magnetism – phrase used to describe the four physical laws of electricity and 
magnetism and their study 
 
electromagnet – magnet formed by passing current through a coil than surrounds a piece of 
iron or other suitable substance 
 
electromagnetic pick-up – see pick-up 
 
electromagnetic pick-up set – see pick-up set 
 
electromagnetic wave (EM wave) – a transverse wave requiring no medium to travel in since a 
changing electric field creates a magnetic field (Ampère’s law extended) and a changing 
magnetic field creates an electric field (Faraday’s law). The wave propagates itself. All EM 



(pronounced E and M) waves, whether they are visible or invisible, travel at the speed of light 
(300,000 km/s). 
 
electron – an elementary particle with charge –1 that serves as a building block in the make-up 
of atoms. The electrons exists in the region than surrounds the inner positive nucleus. It is the 
electrons in outer atomic shells of metals that travel as electricity in wires made of metals such 
as copper. 
 
electronics – the use of electrical components to build devices such as radios 
 
Ellington, Duke – jazz band leader, composer, pianist. His Blues in Orbit (1958) gives a 
modern version of the blues for the early years of the Space Age. His Satin Doll is built on the 
2-5 and 2-5-1 sequence from the circle of fifths. 
 
embouchure – the opening that serves as one open end of the orchestral flute over which the 
performer blows air to make the flute resonate 
 
envelope – the amplitude shape of the sound spanning the attack, decay, sustain, and release 
phases 
 
envelope generator (ADSR) – the synthesizer module that controls the attack time, decay time, 
sustain level, and release time of an audio signal and starts the process when the trigger 
voltage is received 
 
equal-tempered scale – the twelve-tone scale where each note is a half-step interval away 
from each of its adjacent notes 
 
equal temperament – tuning the notes on the piano so that all adjacent notes, i.e., all half 
steps, have the frequency ratio given by the twelfth root of 2 
 
equalizer – device containing a group of bandpass filter circuits with amplifier controls so that 
you can adjust the sound level in each frequency band 
 
equilibrium – the state of the medium when no waves are present 
 
Eustachian tube – tube connecting the back of the mouth to the middle ear serving for 
pressure adjustments when we climb to high altitudes or return to low altitudes 
 
Faraday’s law – a changing magnetic field inside a coil produces electrical current in the coil 
 
fifth - the musical interval from Do to Sol, which outlines the beginning of “Twinkle, Twinkle 
Little Star,” which is also an interval of 7 half steps. ). In the Just Diatonic Scale with perfect 
ratios, the interval of a fifth is 3:2. 
 
filter (electrical) – a device that allows the passage of electrical waves with a certain frequency 
range 
 
filter tracking – technique used in synthesizers where the filter cutoff shifts its frequency to 
adjust for the note you are playing, thereby producing a similar altering of the harmonics for all 
the notes you play 



 
Fitzgerald, Ella – historical jazz singer who sings our signature 1-6-2-5 song Heart and Soul. 
She also appeared in a Memorex commercial breaking a glass with her amplified voice. 
 
flash – name for a circuit where a capacitor first touches a battery to store electricity and then 
the capacitor touches a light bulb to release the stored electricity, making the bulb flash briefly 
 
flashlight – a circuit with a battery and light bulb arranged in a loop 
 
Fletcher-Munson Curves – a series of graphs published in the 1930s that shows the equivalent 
hearing threshold, and equivalent loudness levels, over all frequencies and loudness in human 
perception. Each equivalent curve has a distinct phon value. The phon value is set to agree 
with the decibel value at 1000 Hz. 
 
flute – a woodwind instrument that acts as an open pipe and has the highest range of the four 
common woodwinds: flute, oboe, clarinet, and bassoon 
 
fourth – the musical interval from Do to Fa, e.g., the beginning of “Here Comes the Bride,” 
which is also an interval of 5 half steps. In the Just Diatonic Scale with perfect ratios, the 
interval of a fourth is 4:3. 
 
formant – an enhanced frequency region in a spectrogram due to the resonance structure of 
the system generating the sound. Resonances of some of the frequencies produced result in 
enhancements of those frequencies. 
 
Fourier analysis – the breaking down of a complex periodic wave into its harmonics, including 
the amounts of each harmonic present (the harmonic amplitudes) 
 
Fourier spectrum – the bar graph you get for the Fourier recipe of a particular periodic wave 
where the amplitude of each harmonic is represented along the vertical axis and the harmonic 
number or frequency along the horizontal 
 
Fourier synthesis – the construction of a complex periodic wave by adding the appropriate 
amounts of its harmonics and lining the harmonics up correctly (the phases) 
 
Fourier’s theorem – any periodic wave with frequency f can be built by using sine waves with 
frequencies f, 2f, 3f, 4f, and so on by adding appropriate amounts of each (and possibly 
needing to shift the phases of some of the harmonics before you add them) 
 
French horn – a brass instrument with a second lowest musical range of the brass, the lowest 
being the tuba 
 
frequency – the number of times something repeats during a time interval. The common 
example used often is the number of cycles per second, written as 1/s and defined as hertz, 
i.e., Hz. 
 
frequency modulation (FM) – the change of the frequency of a wave 
 
fret – a ridge on a guitar to mark the place where one should place a finger to obtain a note of 
the scale 



 
fullness – term in acoustics used when reverb is present for all frequencies 
 
fundamental – the first harmonic in the harmonic series 
 
Garner, Erroll – jazz pianist who played completely by ear, never learning to read music. 
 
gating – an example of amplitude modulation where you apply a square-wave modulator to a 
sound wave such that you hear the sound during the crest-phase of the modulator and do not 
hear the sound during the trough-phase of the modulator 
 
generator – device that generates electricity via the Faraday principle, e.g., moving a magnet 
in and out of a coil generates alternating current in the coil 
 
Gillespie, Dizzie – jazz trumpet player, colleague of Charlie Parker, who together were 
forerunners of the bebop era (a fast-paced jazz era with 2-5 sequences inserted in the blues 
as well as dissonant improvisations). 
 
golden rule – the rule that in constructing a guitar, the next fret should be placed 1/18 of the 
distance from the current fret to the bridge 
 
graph – a plot of data where the vertical axis represents one characteristic or parameter and 
the horizontal axis another such as distance and time respectively. One can then say that we 
are plotting distance against time. 
 
green noise – mid-frequency noise 
 
Greensleeves – song dating back to Elizabethan times (1580). Modern harmonization makes 
this song a perfect fit for the 4-7-3-6-2-5-1 in the minor mode or key. The tune is popular today 
as “What Child is This?” during Christmas time. 
 
ground – the part of the circuit where the minus side of the battery is found 
 
guitar – instrument with 6 stings and a series of frets 
 
hair cell – one of about 20,000 cells on the organ of Corti for the detection of sound waves of 
various frequencies from 20 to 20,000 Hz 
 
half step – the musical interval where the ratio is given by the twelfth root of 2, which we can 
remember as the rounded-off value of 1.06. Going up a half step in frequency is analogous to 
gaining 6% in interest so that your original $100 becomes $106. 
 
half wave – one half of the wavelength, e.g., a crest or trough of a sine wave 
 
hammer – the first bone in the middle ear, the bone that attaches to the eardrum 
 
Handy, William Christopher (WC) - jazz composer known as the "father of the blues" 
 
harmonic – a sine wave with frequency in the series f, 2f, 3f, etc. where f is the first frequency 
 



harmonic motion – natural motion with smooth crests and troughs described by a sine wave 
such as that made by a mass attached to a spring. The same as simple harmonic motion. 
 
harmonic series – the harmonics f, 2f, 3f, and so on, sometimes designated as H1, H2, H3, … 
 
Haydn, Franz Joseph – composer of the classic period in music and known as the "father of 
the sonata" 
 
hearing loss – a condition where the hearing threshold at any frequency tested is greater than 
0 dB. This means that the frequency must be played louder than 0 dB for you to hear it. 
 
hearing threshold – the dB level at which the sound needs to be produced so that you can 
barely hear it. One is typically tested at 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 
and 8000 Hz. The normal threshold is 0 dB for all frequencies tested, which is analogous to 
20/20 in vision. Results for each ear are plotted on an audiogram. 
 
Heart and Soul – song from the 1930s that serves as our signature song for the 1-6-2-5 
progression from the circle of fifths 
 
Helmholtz resonator – a device shaped like a big empty apple cider jug. When you blow across 
the top, the entire air mass swishes around producing a very low pitch. This is unlike the 
longitudinal standing waves produced in narrow pipes. 
 
hi-fi – short for high fidelity 
 
high fidelity – a term dating back to the 1950s meaning that the reproduction of sound with 
vinyl records, early tape recorders, and the radio was of true fidelity – faithful reproductions 
compared to what was available prior to this time 
 
high-pass filter – a filter that passes high frequencies 
 
hiss – high-frequency noise, typically 5000 Hz and above 
 
Holiday, Billie – famous historical jazz singer known as Lady Day 
 
horn – a metal instrument based on open-pipe physics. See brass and the French horn. 
 
house system – the external amplifier and speaker system in a room or auditorium 
 
impressionism – period in the latter part of the 19th century which aims for an impression 
rather than detailed focus such as a catchy tune or sharp image in a painting. The two giants 
are the two Claudes: Debussy in music and Monet in painting. This period is included in 
romanticism for piano competitions but in the humanities and arts it is considered a separate 
period: romanticism more like 1800-1850 and impressionism more like 1850-1900. 
 
inductor – another name used for a coil circuit element 
 
inertia – the property that an object remains at rest or moves at constant velocity unless acted 
upon by a force. Sometimes used interchangeably with mass. 
 



inharmonic partials – frequencies that  are not part of the harmonic series 
 
inharmonicity – term to describe a sound that consists of frequencies that are not in the 
harmonic series f, 2f, 3f, etc. for the tone or sound. Examples include bells, gongs, and noise. 
 
in phase – two waves with the same wavelength are such that the crest of one wave lines up 
with the crest of the other wave. The phase shift of one with respect to the other is 0 degrees. 
 
inner ear – the region of the ear beyond the oval window which transmits sound via fluid 
conduction and from which electrical signals are sent to the brain 
 
interference – the effect due to superimposing two waves, i.e., adding two waves together 
 
interval – the musical jump or span from one note to another, e.g., a fifth is the interval you 
span going from Do to Sol 
 
intimacy – term in acoustics for the presence of reflections reaching the hearer within 20 ms 
after the direct sound reaches the hearer 
 
Jobim, Antonio Carlos – Brazilian composer known as "Tom" who composed many bossa 
nova songs, e.g., One Note Samba which has a charming pair of 2-5-1 sequences in its middle 
section. 
 
just diatonic scale – the major scale tuned to perfect ratios – Do (1:1), Re (9:8), Mi (5:4), Fa 
(4:3), Sol (3:2), La (5:3), Ti (15:8), Do’ (2:1) 
 
Khachaturian, Aram – modern Armenian composer who used extensively the half step and 
small intervals, giving his music a non-western element, characteristic of Armenia 
 
kettledrum – a drum that also includes a tuned pitch since the cavity in this case acts as a 
Helmholtz resonator, i.e., encouraging the air mass to swish around producing a low-pitch 
tone. 
 
keyboard (KBD) – unit that sends out along the voltage-control wire a different voltage for each 
key that is pressed and sends out along the trigger control wire a common signal when any 
key is pressed down. The voltage-control wire connects to the VCO and the trigger control 
goes to the ADSR. 
 
Laura – movie from 1944 where composer David Raksin uses four 2-5-1 progressions in the 
key song for the movie, also named Laura. 
 
Lissajous figure – a stationary pattern formed when a horizontal wave motion is combined with 
a vertical wave motion because the frequency ratio can be expressed with whole numbers 
such as 1:1, 3:2, or 4:3 
 
liveness -  term in acoustics for the presence of sufficient reverb 
 
longitudinal standing wave – a harmonic vibration in a pipe so named because the “dancing 
pattern” has a “kind of stationary characteristic” with its fixed displacement nodes and moving 
antinodes in between 



 
low-frequency oscillator (LFO) – synthesizer module that generates a periodic control voltage 
in the range from 0 to 25 Hz that is used to modulate a carrier wave 
 
low-pass filter – a filter that passes low frequencies 
 
lower sideband – the inharmonic frequency components on the left side of center in a 
spectrum due to balanced modulation 
 
LRC circuit – a circuit consisting of an inductor (coil), resistor, and capacitor. L = inductor, R = 
resistor, C = capacitor. 
 
kilo – the metric prefix for 1000, e.g., 1 kilosecond = 1000 seconds 
 
kilowatt hour – useful for electrical costs since it includes the wattage (current you draw times 
the voltage you are using, i.e., P = IV) and also the time (hour). The typical charge is about 10 
cents per kilowatt hour, i.e., 10 cents per kWh. 
 
larynx – the space in the vocal track lying above the vocal folds 
 
linear tracking – term used in record players where the arm is straight and thus there is no 
skating force to deal with 
 
longitudinal wave – a wave where the medium moves parallel (or antiparallel) to the direction 
of propagation of the wave 
 
loudness – the perceived strength of an acoustic wave as experienced by the ear/brain system 
where stronger perceived waves are said to be louder 
 
LP – long-playing record. The LP record turns slowly at 33 and 1/3 rotations per minute in 
contrast to records turning at 45 rotations per minute and the very early ones that turned at 78 
rotations per minute. 
 
Mach speed – the speed in units where the value “1” stands for the speed of sound in the 
medium under consideration. At standard temperature and pressure, Mach 1 = 340 m/s = 1125 
ft/s = 750 mi/h. 
 
magnetic dipole – a magnet with its north and south pole. Also, small “baby magnets” residing 
on a magnetic tape. 
 
magnetic force law – like poles (two norths or two souths) repel and unlikes attract 
 
magnetism – term to describe magnets and their physical nature 
 
magnetic field – force field that surrounds a magnet or a field that is produced when you send 
current through a coil with nothing inside the coil. The magnetic field is produced in the space 
inside the coil for such a situation. The farther you get away from the source of the field, the 
weaker its effects. 
 



major key (song in) – a song that sounds happy because the third degree of the scale is used 
in the song as well as in the root harmony (1-chord) 
 
major scale – Do, Re, Mi, Fa, Sol, La, Ti, Do’, which in the equal-tempered scale has these 
adjacent intervals: Do-Re (whole step), Re-Mi (whole step), Mi-Fa (half step), Fa-Sol (whole 
step), Sol-La (whole step), La-Ti (whole step), Ti-Do’ (half step) 
 
Mancini, Henry – composer of film music. He employs two consecutive 5th intervals effectively 
in his theme for the movie Condorman. 
 
Marsalis, Wynton – famous trumpet player who gives a nice analogy of playing the blues with 
playing within the boundary of a basketball court. Marsalis also likes to give the Albert Murray 
description of blues as a vaccination against real sadness. 
 
mass – “stuff” that makes up any object. See inertia. 
 
masking – the covering up of sound by one sound as in the sounds of a fan drowning out a 
conversation 
 
medium – the environment such as air or a spring through which a wave can travel 
 
Mersenne’s laws – three string laws: 1) longer strings have lower pitches, 2) greater string 
tension means higher pitch, and 3) heavier strings have lower pitches 
 
microphone – a device that translates the mechanical motion of a diaphragm into an electrical 
signal via Faraday’s law 
 
middle ear – the region of the ear from the eardrum to the oval window consisting of three tiny 
bones that vibrate in step with incoming sound waves 
 
milli – the metric prefix for 1/1000, e.g., 1 millisecond = 1/1000 of a second 
 
minor key (song in) – a song that sounds mysterious or sad because the root harmony (1-
chord) is built using the minor third (tone a half-step lower than the third) and the song may 
use the minor third in the melody line 
 
minor third – the musical interval from Do to a half step lower than Mi, i.e., an interval equal to 
three half steps 
 
modular synthesizer – electronic circuits designed in modules that can synthesize and 
manipulate sound characteristics. See synthesizer. 
 
modulation – changing a property of a wave such as its amplitude or frequency 
 
modulator – the wave that modulates a carrier wave in some way 
 
monopole – term that refers to a single north magnetic pole or single south magnetic pole, 
either of which have never been found alone. Magnets always come with a north and south 
pole. 
 



moogerfooger – a balanced modulator. See balanced modulator and balanced modulation. 
 
mouth cavity – open passage beyond the mouth that serves as a resonance chamber 
producing formants in the sound made by the vocal system 
 
Mozart, Wolfgang Amadeus - composer of the classic period in music. A child prodigy and 
super genius composer often used as a "yardstick" to measure other composers. 
 
Murphy’s law – law named after electrical engineer, which law is commonly stated as “If 
something can wrong, it will.” Engineers make back-up systems because of this law and it is 
prudent to do so in real life situations, e.g., never let things go to the last minute. 
Murray, Albert – author of Stomping the Blues, blues is like an antidote or vaccine. 
 
Moog, Bob – inventor of the Moog Synthesizer. He spent the last 25 years of his life mostly in 
Asheville and associated with UNC Asheville. His company Moog Music is in downtown 
Asheville. 
 
Moog synthesizer – synthesizer invented by Moog. See synthesizer for more about Moog as 
inventor of the synthesizer. 
 
Moogerfooger – a balanced modulator developed by Bob Moog 
 
music synthesizer – see synthesizer 
 
musical range – the range of tones that can be produced by a musical instrument or singer. 
The musical range for the piano is about 7 octaves from the lowest note at 27.5 Hz to the 
highest pitch at 4186 Hz. 
 
musical scale – a discrete set of tones from which one can compose a tune. Examples include 
the major scale, the common minor scale, blues scale, whole-tone scale, pentatonic scale 
(black keys only on the piano). 
 
“Musician’s Scale” – term used by your instructor to refer to the major scale (Do-Re-Mi-Fa-Sol-
La-Ti-Do’) 
 
musical temperament – see temperament 
 

NAND – the NOT of AND which can be written as Y A B   
 
nasal cavity – open air passage beyond the nose that serves as a resonance chamber 
producing formants in the sound made by the vocal system 
 
neurosensory hearing loss – hearing loss of specific frequencies due to damage of hair cells in 
the inner ear 
 
neutron – an elementary particle with charge zero that serves as a building block in the make-
up of the nucleus of atoms 
 



node – a place on a wave that does not change, e.g., displacement node means no 
displacement; pressure node (in a pipe) means no change in pressure 
 
noise – term to describe the presence of all frequencies from 100 Hz to 10,000 Hz 
 
noise generator (N) – synthesizer module that generates all frequencies (noise) 
 

NOR – t he NOT of OR which can be written as Y A B   
 

NOT – the value Y A , where Y = 1 if A = 0 and Y = 0 if A = 1 
 
oboe – a woodwind instrument that acts as an open pipe and has a slightly lower musical 
range than the flute and a higher musical range than the clarinet 
 
octave – the musical interval from Do to Do’ which starts the song “Somewhere, Over the 
Rainbow,” which is also an interval of 12 half steps. The two notes form an interval of an 
octave if their frequency ratio is 2:1. 
 

ohm – the unit of resistance; ohm is abbreviated by the Greek letter  (capital omega) 
 
Ohm’s law – the law V = IR, where V is the voltage, I is the current, R is the resistance and R 
is constant. However, the rule V = IR can always be applied whether R is constant or not. 
 
open pipe – a pipe open on each end where we designate the pipe length as L. The natural 
modes of the longitudinal vibrations are called harmonics and they have frequencies f1, 2f1, 3f1, 
etc., where f1 is the frequency of the first harmonic (fundamental). The corresponding 

wavelengths are 1 = 2L, 2L/2, 2L/3, and so on. For each frequency f and its associated 

wavelength the wave relation is always true: v =  f, where v is the speed of waves in the 
medium inside the pipe, the medium usually being air. 
 
OR – the result for Y = A + B with Y = 1 if either A = 1 or B = 1 
 
orchestra – large group of instruments including the strings, woodwinds, brass, and percussion 
 
organ of Corti – the organ in the cochlea that detects sound waves and from which the auditory 
nerve goes to the brain 
 
oscillation – the generic term for vibration or production of one cycle of a periodic wave 
 
oscilloscope – an electrical measuring instrument that sweeps out a picture of an electrical 
wave 
 
oval window – the boundary between the middle ear and inner ear 
 
overtone – any harmonic above the fundamental (1st harmonic). Thus the first overtone is the 
2nd harmonic, the second overtone is the 3rd harmonic and so on. 
 
overtone series – the overtones: H2, H3, H4, H5, and so on. When you include the 
fundamental with the overtone series you get the harmonic series. 



 
out of phase – two waves with the same wavelength where the crest of one wave lines up with 
the trough of the other wave. The phase shift of one with respect to the other is 180 degrees. 
 
outer ear – the region of the ear from the ear lobe to the eardrum 
 
Parker, Charlie "Bird" – jazz saxophonist who incorporated the 2-5 in the blues formula 
 
partial – any harmonic in the harmonic series H1, H2, H3, .. (f, 2f, 3f, …) 
 
peak-to-peak amplitude – a measure equal to twice the amplitude 
 
perfect ratio – a ratio of two whole numbers such as 2:1, 1:2, 3:2, 2:3, etc. 
 
period – the time it takes to complete one cycle of anything that repeats such as a periodic 
wave 
 
periodic wave – a wave pattern that repeats 
 
periodicity pitch – the fundamental perceived by the ear/brain system even if no fundamental is 
present since H2 and H3 imply a periodicity of a fundamental H1. So the ear/brain system puts 
in the fundamental during the perceptual processing even though it is not physically there. 
 
Peterson, Oscar – Jamaican-Canadian jazz pianist who had phenomenal technique. A Franz 
Liszt of Jazz Piano. 
 
phase – the horizontal shift of a wave, where 360 degrees represent a shift of one wavelength. 
A phase of 180 degrees means you have shifted a wave by one-half wavelength so that a 
crest has moved over to where a trough was initially located. A phase shift of 90 degrees 
means you have shifted the wave by one-quarter wavelength. 
 
phon – a unit that designates the same loudness value. A value of zero means we can barely 
hear it. Humans are not that sensitive to low pitches. Therefore, 0 phons at 20 Hz has to be 70 
dB according to a scientific meter for us to barely hear it. The phons are matched with dB 
values at 1000 Hz. Therefore, 60 phons = 60 dB for perception at 1000 Hz. 
 
“Physicist’s Scale” – term used by your instructor to refer to the scale you would get using just 
the harmonics: f, 2f, 3f, … 
 
piano – percussive instrument with 88 keys and 88 hammer/string units (single strings for low 
pitches, double for intermediate pitches, triple for the highest pitches), all under high tension. 
The musical range is from 27.5 Hz to 4186 Hz, a span of a little more than 7 octaves. 
 
pianoforte – name for the piano, meaning soft-loud in Italian. The piano was an innovation 
capable of soft and loud sounds depending on how hard you hit the keys. It was therefore 
named pianoforte, which was shortened to piano. 
 
pick-up – a small coil near the metallic string of an electric guitar that picks up changing 
magnetic fields as the nearby metallic string vibrates. The vibrating string disturbs the 
magnetic field inside the coil, thus inducing electrical signals in the coil via Faraday’s principle. 



 
pick-up set – a set of pick-ups so that each electric guitar string has its own pick-up. You can 
have more than one set of pick-ups on the guitar, where a second pick-up set is placed at 
another location along the strings. 
 
pink noise – noise with a greater presence of low frequencies 
 
pipe – see open and closed pipe 
 
pitch – the perception of the frequency of a sound wave where higher frequencies are said to 
have higher pitch 
 
physics – the study of the fundamental properties and laws of matter and energy 
 
place theory of hearing – the idea that the location of the detection of sound along the 3.5-cm 
basilar membrane depends on the frequency. Each octave of 10 octaves is detected over a 
distance of 3.5 cm / 10 = 3.5 mm of the basilar membrane with the higher and higher 
frequencies being detected on the stiffer and stiffer sections of the basilar membrane. These 
stiffer sections are closer to the oval window. 
 
plot – graph 
 
pole – either end of a bar magnet: a magnetic north pole or magnetic south pole 
 
power – the product of the current and voltage, i.e., P = IV. Your electrical company charges 
you for the power (which includes how much current you draw and at which voltage). But in 
addition, they charge you for the time duration you use it. 
 
power supply – a device you plug in and obtain voltage so that you do not have to use 
batteries. A typical power supply in a lab is one that ranges from 0 to 5 volts, producing direct 
current. 
 
preamplifier – an amplifier than enhances a very weak signal, which in turn is further amplified 
by another amplifier and then sent to a speaker for everyone to hear the sound 
 
presbycusis – natural hearing loss of high frequencies as one ages 
 
pressure antinode – a place where maximum change in pressure occurs 
 
pressure node – a place where no change in pressure occurs, e.g., the open end of a pipe 
which is free and always takes on the atmospheric pressure of the surrounding environment 
 
Prokofiev, Sergei – Russian modern composer using dissonance for beauty and innovative 
use of the 9th in form a chord to replace the usual classical chord ending with the 8th 
 
propagation – the traveling of a wave. To propagate is the same as to travel in this context. 
 
proton – an elementary particle with charge +1 that serves as a building block in the make-up 
of the nucleus of atoms 
 



pulse – a wave disturbance that does not repeat 
 
pulse-train wave – a wave with a narrow pulse in each wavelength. The Fourier amplitudes are 
1, 1, 1, 1, 1, 1, 1, 1, 1, etc. for the Fourier components H1, H2, H3, H4, H5, H6, H7, H8, H9, 
and so on 
 
pulse wave – a wave consisting of a “rectangular building” and “courtyard.” If the building takes 
up half the wavelength, you have a square wave. If the building is very narrow, you have a 
pulse train wave. 
 
pulse-width modulation (PWM) – a form of timbral modulation where the pulse-width of a 
rectangular-shaped wave changes its width 
 
pulse-width – the width of a rectangular-shaped wave crest  
 
Q-value – a measure of how tall and thin the resonance graph is. High Q-value means tall and 
narrow width; low Q-value means short and wide. 
 
quality factor – see Q-value 
 
Rachmaninoff, Sergei – Russian composer who had a nervous breakdown after a poor 
performance of his first symphony. He was cured by the Moscow physician Dr. Dahl who kept 
telling Rachmaninoff positive things over and over again daily for more than three months. 
Rachmaninoff then wrote his Second Piano Concerto and dedicated it to Dr. Dahl. 
 
radio – a device that receives electromagnetic waves and extracts the sound information for us 
to hear. It at least contains a tuner and a demodulator. It may also include an amplifier and 
speaker so that it is a self-contained unit with no need for an external amplifier and speaker. 
 
Rainey, Ma - early jazz singer known as the "mother of the blues" 
 
ramp wave – a wave with a ramp waveform. The Fourier amplitudes are 1, 1/2, 1/3, 1/4, 1/5, 
1/6, 1/7, 1/8, 1/9, etc. for the Fourier components H1, H2, H3, H4, H5, H6, H7, H8, H9, etc. 
 
Ravel, Maurice – French impressionistic composer 
 
RC circuit – a circuit consisting of a resistor and capacitor, characteristic of filter circuits. R = 
resistor, C = capacitor 
 
receiver – a console sound component that contains a radio and amplifier as well as inputs to 
the amplifier for a record player, tape deck, or CD. You may be able to connect all three at the 
same time but you will still need to buy a speaker system in order to hear anything. 
 
record player – device that converts the mechanical vibrations of the stylus (as it rides over the 
hills and valleys of a vinyl record) into electrical signals via Faraday’s law 
 
reflection – the bouncing of a wave off a surface 
 
rarefaction – a stretching of the medium in a longitudinal wave, analogous to a trough of a 
transverse wave 



 
red noise – low-frequency noise 
 
refraction – a change in direction of a wave due to a change in the wave properties of the 
medium 
 
Reissner membrane – protective membrane above the tectorial membrane in the cochlea 
 
release – the time it takes for the sound to go from its sustain level to zero after the key is 
released 
 
resistor – circuit element that limits the flow of electricity 
 
resonance – the phenomenon occurring when a driven oscillatory system gives the greatest 
amplitude of response. The frequency at which this occurs is called the resonance frequency. 
 
resonance circuit – the LRC circuit, the electrical analogy of the mechanical resonance system. 
L = inductor (coil), R = resistor, C = capacitor 
 
resonance curve – the plot or graph of the amplitude response (vertical axis) versus the 
frequency (horizontal axis) 
 
resonance filter – bandpass filter with a transmission graph that resembles the resonance 
curve 
 
resonance frequency – the frequency that results in the greatest response of a driven 
oscillating system 
 
reverb – echo. Also, a synthesizer module (REV) that adds reverb to the sound. 
 
reverberation time (RT) – the time it takes for the sound level to drop 60 dB 
 
ring modulator – same as balanced modulator, so called because the basic circuit design in 
the first models resembled a ring  
 
Romantic Period in Music - roughly the time spanning 1800 - 1900. This period reacts against 
the simplicity and order of the classic period that preceded it. Romantic music can be 
excessive in nature, exaggerated, and over the top. 
 
round window – the end of the sound path in the inner ear and located below the oval window 
 
Saint-Saëns – romantic composer, use of many harmonics in his Third Symphony that 
includes an organ, composer of Danse Macabre (The Skeleton Dance) with its dramatic use of 
the tritone 
 
sample and hold – phrase used to describe the fact the voltage in the control-voltage sent out 
by the keyboard in a synthesizer retains its value even after the key is released 
 
sampling rate – see digital sampling rate 
 



saw tooth wave – a ramp wave 
 
scala tympani - lower chamber in the unwound cochlea through which sound passes after 
being detected by vibrating a section of the basilar membrane 
 
scala vestibuli – upper chamber in the unwound cochlea through which sound first enters 
before being detected by the basilar membrane 
 
Schumann, Clara Wieck - super talented daughter of piano teacher Friedrich Wieck who was 
groomed by her father to be one of the best pianists in Europe. Also, romantic composer and 
wife of Robert Schumann, who also studied piano with her dad. 
 
Schumann, Robert - romantic composer known for his bipolar nature producing many works 
during his manic phases and attempting suicide twice during depression stages. He died in an 
insane asylum, believed to be the result of contracting syphilis in his youth. He married his 
former piano teacher's daughter Clara. 
 
scope – abbreviated form for oscilloscope, often used by personnel in physics and electronics 
labs 
 
second – the musical interval from Do to Re, e.g., the beginning of the song “Doe a Deer, a 
Female Deer, …,” which is also an interval of 2 half steps (1 whole step). In the Just Diatonic 
Scale with perfect ratios, the interval of a second is 9:8. 
 
semitone – a half step 
 
seventh – the musical interval from Do to Ti, which was prominently used by John Williams in 
the theme to the movie Superman in 1978, which is also an interval of 11 half steps. ). In the 
Just Diatonic Scale with perfect ratios, the interval of a seventh is 15:8. 
 
sidebands – the inharmonic frequency components on either side of the center in a spectrum 
due to balanced modulation 
 
simple harmonic motion – natural motion with smooth crests and troughs described by a sine 
wave such as that made by a mass attached to a spring. The same as harmonic motion. 
 
sine wave – the motion made by a mass attached to a spring, the simplest and most natural 
waveform. The Fourier amplitudes are 1, 0, 0, 0, 0, 0, 0, 0, 0, etc. for the Fourier components 
H1, H2, H3, H4, H5, H6, H7, H8, H9, and so on. In other words, you just have one Fourier 
component – the fundamental H1. 
 
sixth – the musical interval from Do to La, e.g., the beginning of the song “My Bonnie Lies Over 
the Ocean,” which is also an interval of 9 half steps. In the Just Diatonic Scale with perfect 
ratios, the interval of a sixth is 5:3. 
 
skating force – the force on a bent record player arm that tends to pull the arm towards the 
center of the record as the record is played. This is counteracted with the antiskating outward 
force due to a little spring attached to the arm. 
 



shock wave – a wave with a large “V” (in two dimensions) or “cone structure” (in three 
dimensions) that is created when an object travels faster than the wave speed in the medium. 
An example is a speeding motor boat making a V-formation in the water. 
 
Smith, Bessie - early jazz singer known as the "Empress of the Blues" 
 
SONAR – SOund Navigation And Ranging. One can determine the depth of water by noting 
the time it takes a sound wave to leave the boat to reach the bottom and reflect back to the 
boat. You need to use the speed of sound in water, which is 1500 m/s. 
 
sonata - "classic" form in music consisting of exposition, development, and recapitulation. In 
the exposition there is the primary theme followed by a contrasting secondary theme. 
 
sonic boom – an acoustic shock wave 
 
source – term used for source of sound or source of electrical signal 
 
speaker – device that converts electrical oscillations into the mechanical vibrations of a 
diaphragm via Ampère’s law 
 
spectrogram – a plot of frequencies on the vertical axis against time on the horizontal where 
louder sounds appear with thicker lines. If you view a spectrogram on a computer, it is possible 
that louder sounds are represented with brighter lines and/or different colors. 
 
Spivey, Victoria - early jazz singer and known for singing "Black Snake Blues" 
 
square wave – a wave with a square crest and upside-down square trough waveform. The 
Fourier amplitudes are 1, 0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9, etc. for the Fourier components H1, H2, 
H3, H4, H5, H6, H7, H8, H9, and so on. 
 
staccato – sound with an abrupt attack and abrupt release 
 
standing wave – any single harmonic vibration on a string or in a pipe so called because the 
“dancing pattern” has “kind of a stationary characteristic” with its stationary displacement 
nodes and moving displacement antinodes in between each pair of displacement nodes 
 
static electricity – excess charge on an object which can then attach itself to another object, 
e.g., rubbing a balloon on your arm will enable a balloon to stick to a wall due to static 
electricity 
 
stirrup – the third bone in the middle ear, the bone that connects to the oval window 
 
Stravinsky, Igor – Russian born modern composer with innovative rhythm and use of clashing 
harmonics (1/2 step apart) in his Rite of Spring (1913) 
 
string – used as an ideal model for string physics. A string of length L is fixed on each end. The 
natural modes of the transverse vibrations are called harmonics and they have frequencies f1, 
2f1, 3f1, etc., where f1 is the frequency of the first harmonic (fundamental). The corresponding 

wavelengths are 1 = 2L, 2L/2, 2L/3, and so on. For each frequency f and its associated 



wavelength the wave relation is always true: v =  f, where v is the speed of waves on the 
string. 
 
strings – instruments in the string family where vibrating strings are used to make sounds: 
violin, viola, cello, and bass. In the typical orchestra you might find a group of 10 violins 
categorized as the first violins, another 10 violins categorized as the second violins, about 8 
violas, 10 cellos, and 6 basses. 
 
stylus – a needle (best being diamond) that rides over the hills and valleys of a vinyl record 
 
sum displacement – addition of the displacements for two waves or more, remembering that 
positive heights are above the “sea level” reference line and negative heights are below. You 
need to combine the displacements including the relevant plus or minus signs during your 
addition. 
 
supersonic – faster than the speed of sound, i.e., greater than Mach 1 
 
sustain – the level for the sound as the user keeps a finger on the key 
 
synthesizer – electronic device producing sound where one of the inventors was Robert Moog 
(1934-2005). Moog was a resident of Asheville for roughly his last 25 years of his life and 
former Artist in Residence at UNC Asheville. He was also a former adjunct professor in our 
Department of Physics. 
 
tape recorder – a device that converts a signal stored on a magnetic tape into electrical signals 
via the Faraday principle. The signal is stored on the tape by different orientations of “baby 
magnets” (magnetic dipoles) during the length of the tape. When a recording is made, 
Ampère’s principle is used to convert electrical signals to magnetic storage by aligning “baby 
magnets” on the magnetic tape as the tape is pulled across the recording head. 
 
tape speed – the speed of tape in a tape recorder. Cassette tape speed is 1 and 7/8 inches per 
second, which we often approximate as 2 inches per second. The standard speeds in reel-to-
reel tape recorders are double and quadruple that for the cassette. These standard speeds are 
3 and 3/4 inches per second and 7 and 1/2 inches per second. There are even faster tape 
speeds such as 15 inches per second. The faster tape speeds allow for better sound quality. 
 
Taps – a theme that is composed using only the harmonics H3, H4, H5, and H6 
 
Tatum, Art – Black American Jazz Pianist legally blind since childhood due to early cataract 
complications. Supreme technique at the piano in a flamboyant “romantic” style. A Franz Liszt 
of Jazz Piano. 
 
Tchaikovsky, Peter – romantic Russian composer known for his long melodic lines, long 
dramatic endings, e.g., use of the rapidly alternating 1-chord and 5-chord at the end of a work. 
Disastrous marriage, no consummation, because he was gay. Use of inharmonic sounds with 
bells and cannons in his 1812 Overture. 
 
tectorial membrane – membrane just above organ of Corti that interacts with hair cells on the 
organ of Corti as sound is detected by the cochlea 
 



temperament – a prescription for tuning, e.g., in equal temperament, one adjusts the frequency 
ratios from one note to the next so that each ratio is a constant 1.059…, the twelfth root of 2 
 
theremin – early electronic device invented by Leon Theremin where an eerie pitch is 
produced depending on where your right hand is relative to a vertical metal rod. The closer to 
the rod, the higher the pitch. The left hand controls the loudness – when near a metal ring with 
your left hand, the sound level diminishes. 
 
Theremin, Leon – inventor of the Theremin 
 
third – the musical interval from Do to Mi, e.g., the beginning of the “Marine’s Hymn,” which is 
also an interval of 4 half steps (2 whole steps). ). In the Just Diatonic Scale with perfect ratios, 
the interval of a third is 5:4. 
 
timbre (or timber) – the perception of the waveform of a wave, which allows us to distinguish 
one instrument from another such as a flute from an oboe 
 
timbral modulation (TM) – the change of the timbre of a wave 
 
tinnitus – internal perception of sound as a ringing or buzzing when there is no sound present, 
occurring at places on the frequency spectrum where there is an actual hearing loss 
 
tracking force – the force of that the stylus exerts on a vinyl record, the typical value being the 
weight of one gram of mass 
 
trachea – the space in the vocal track lying below the vocal folds 
 
transistor – circuit element that can act as a switch and amplifier. It has two input wires and 
one output wire. One input (B = Base) accepts a tiny amount of current and this activates the 
transistor so that lots can flow from the other input (C = Collector) and out the common output 
(E = Emitter). 
 
transmission – the passing of an electrical signal through a filter or other circuit element 
 
transposing – the act of changing the key of a song or scale from one starting frequency (Do) 
to a new starting frequency. All relative relationships in the song or scale are kept so that the 
song or scale is recognizably the same but higher or lower in pitch. 
 
transverse wave – a wave where the wave disturbance moves sideways (perpendicular) to the 
direction of propagation of the wave 
 
treble control – amplifier control for a high-pass filter so that you can adjust the strength of the 
higher frequencies 
 
tremolo – the musical term for an amplitude modulation, i.e., periodic changes in loudness 
levels alternating between louder and softer levels 
 
triad – musical term for three tones played simultaneously as a harmony, i.e., a chord 
 



triangle wave – a wave with a triangle crest and upside-down triangle trough waveform. The 
Fourier amplitudes are 1, 0, 1/9, 0, 1/25, 0, 1/49, 0, 1/81, etc. for the Fourier components H1, 
H2, H3, H4, H5, H6, H7, H8, H9, and so on. 
 
trigger voltage – voltage control sent from keyboard (KBD) to the envelope generator (ADSR) 
to initiate the ADSR sequence 
 
tritone – an interval corresponding to three whole steps 
 
trough – the part of a wave below the “sea level” reference line of the wave. The “sea level” 
line is the horizontal equilibrium line drawn through the middle of the wave. 
 
trombone – the brass instrument without values that extends in order to produce different 
notes and having a musical range a little smaller than that of the French horn 
 
trumpet – the brass instrument with three valves and the highest musical range in the brass 
family 
 
tuba – the brass instrument with three valves that has the lowest musical range in the brass 
family 
 
tuner – a resonance electrical circuit that can tune in to pick up a radio signal. You tune in by 
changing either the capacitor value or inductor value (for the coil) in the circuit. 
 
twelfth root of 2 – the number “a” such that when taken as a factor 12 times and multiplied, you 
obtain 2, i.e., a x a x a x a x a x a x a x a x a x a x a x a = 12. The value for a = 1.05946309…, 
which in class we take to be 1.06. 
 
tweeter – speaker with a small light membrane to support the rapid motion of high frequencies, 
i.e., waves with short wavelengths 
 
twelve-tone scale – the scale with twelve tones, each one half-step from each other 
 
two-way speaker system – see two-way crossover network 
 
two-way crossover network – a circuit that accepts an input signal and directs the low 
frequencies to the woofer and the high frequencies to the tweeter 
 
“Twirl-a-Tune” – a corrugated plastic toy often going by various names which produces 
harmonics when twirled, beginning with the 2nd harmonic (H2) and reaching higher harmonics 
as it is twirled faster and faster 
 
tympani – a set of typically three kettledrums, one usually tuned to the 1 (first degree of the key 
of the piece being played), another to the 5, and the third to the 4 or whatever the composer 
calls for 
 
ultrasound – sound with a frequency above the range of human hearing, i.e., above 20,000 Hz. 
Also, the image of a fetus made by ultrasound. 
 



unison – the name given when two identical pitches are played together. Their ratio is 1:1. An 
example is going from Do to Do, the same note. 
 
unit – in physics, this designates the word that goes with the number when you make a 
measurement, e.g., for a weight of 120 pounds (120 lb), the value is 120 and the unit is lb 
 
upper sideband – the inharmonic frequency components on the right side of center in a 
spectrum due to balanced modulation 
 
vacuum tube – a tube with air pumped out and electrical properties that serves as a 
component in a circuit. Two common vacuum tubes are the tube version of the diode and the 
tube version of the transistor. 
 
VCA – see voltage-controlled amplifier 
 
VCF – see voltage-controlled filter 
 
VCO – see voltage-controlled oscillator 
 
velocity – technically the speed you are going AND the direction you are going; however, often 
just used to represent your speed without a concern for the direction 
 
vibrato – the musical term for a gentle frequency modulation where the frequency changes do 
not vary too far from the original pitch. The result is a quivering pitch characteristic of singers. 
 
viola – the instrument in the orchestral string family that has a lower musical range compared 
to the violin but a higher one compared to the cello 
 
violin – the instrument in the orchestral string family that has the highest musical pitches 
compared to the others such as the violas or cellos 
 
vocal cords – see vocal folds 
 
vocal folds – the vibrating biological component producing sound in the human vocal system, 
also referred to as vocal cords. The vocal-folds end is approximated as a closed pipe end. 
 
vocal formants – formants in the sound spectrogram produced by the uniqueness of one’s 
vocal system that includes the resonance cavities of the mouth and nose. The simple closed-
pipe model of the vocal tract for a male adult gives a closed-pipe length of 15 cm and a 
fundamental of roughly 500 Hz. This is the first formant region or first formant, also called the 
first principal formant region or first principal formant. The second formant region corresponds 
to the next harmonic in a closed pipe, the third harmonic (1500 Hz). The third formant region is 
the fifth harmonic (2500 Hz) and so on. 
 
volt – the unit for voltage; volt is abbreviated as V 
 
voltage – the effective strength of a battery’s ability to produce current 
 
voltage-controlled oscillator (VCO) – synthesizer module that accepts a voltage that then 
determines the frequency of the electrical wave that is produced. A VCO can typically be set to 



produce a few different basic waveforms such as sine, triangle, square, ramp, and pulse train 
waves. 
 
voltage-controlled amplifier (VCA) – synthesizer module where the amplitude of the audio 
signal entering the amplifier is changed according to the value of the control voltage applied to 
the amplifier 
 
voltage-controlled filter (VCF) – synthesizer module where the timbre is altered as the audio 
signal entering the VCF is passed through a filter with the cutoff or central frequency 
determined by the VCF control voltage. The filter type (LP, BP, HF) is set by a switch on the 
filter. 
 
warmth – term in acoustics when reverb is present for low frequencies but not much is there 
for high frequencies 
 
wave – a traveling disturbance 
 
waveform – the shape of one pattern of a periodic wave 
 
watt – the unit for wattage 
 
watt hour – see kilowatt hour 
 
wattage – the power, given by the product of the current and voltage (P = IV) 
 
Watts, André – outstanding black pianist from Philadelphia discovered by Leonard Bernstein 
 
wavelength – the distance corresponding to one pattern of a periodic wave 
 
whispering chamber – an elliptically-shaped room where sound from one of two special points 
(each called a focus) gets reflected by the chamber walls so that the reflected wave heads 
towards the other special point (the second focus) 
 
white noise – fairly equal presence of all frequencies from 100 to 10,000 Hz. White noise is 
named after an analogy with white light since white light consists of all frequencies of colors. 
 
whole step – two half steps 
 
whole tone scale – the six-note scale where each note is a whole tone step away from its two 
closest neighboring notes 
 
Williams, John - composer of music for film. In Superman he employs the dissonant 7th 
interval in an effective way. 
 
wire – electrical component made of metal such as copper that allows for the passage of 
electricity. The resistance of a wire in a circuit can be assumed to be zero, i.e., R = 0 ohms. 
This assumption breaks down if the wire gets to be extremely longer and longer. Wires in a 
circuit are typically very short. 
 



woofer – speaker with larger membrane to support the slower motion of low frequencies, i.e., 
waves with long wavelengths 
 
woodwinds – originally made of wood, instruments where the performer blows air against an 
edge or reed to excite the pipe into resonance. The basic woodwind types in the orchestra are 
the flute, oboe, clarinet, and bassoon. There are two of each in the standard orchestra. 
 
XNOR – the NOT of XOR 
 
XOR – the Exclusive OR. For A and B as input, you get a 1 if either A or B is 1 but not both. 
 
 


	Insert from: "text-L.pdf"
	Record Players


