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In the previous chapter we started with 
the musician's scale and found an 
underlying mathematical simplicity to it. 
Here we will start with physics and see if a 
natural scale arises. You might ask if we 
didn't do this already in the last chapter? 
Didn't we construct a set of tones based on 
simple ratios? 

Almost. We found pleasant 
combinations in the ratios 1:1, 2:1, 3:2, 4:3, 
and 5:4. But what about 6:5, and 7:6? 
These were not in our scale. The ultimate 
say was the historical major scale as a 
given. We were delighted to see such 
mathematical support for the choices that 
went into making this scale. However, the 
choices were made based on historical 
perceptual esthetics. 

Here we are going to discover a set of 
tones that arise naturally. We will let nature 
pick all the tones with no interference on 
our part. Nature has provided us with two 
very simple structures for tone production - 
the string and the pipe. These, along with 
membranes, serve as the basis for the 
construction of our musical instruments. We 
will study the strings in this chapter and the 
pipes in the next. 

Strings are used in many instruments 
such as guitars, violins, the harpsichord, 

piano, and others. We will find that strings 
produce a natural set of tones. You may 
have heard of words like harmonics or 
partials. These refer to such natural tones. 
Some call these tones the harmonic series, 
the harmonics, or the fundamental and the 
overtone series. We might call these groups 
of notes the "physicist's scale" in contrast to 
the "musician's scale" of the previous 
chapter. 

Just as we discovered that the 
musician's scale of meaningful tones has 
mathematical structure, we will find that the 
reverse is true for the mathematical 
"physicist's scale" or harmonic series. It has 
application in music, serving as a basis for 
musical harmonization and orchestration. 
 
Harmonics 
 

Consider the rope in Fig. G-1 below. 
Typical rope waves vibrate so slowly that 
we cannot hear them. However, we can see 
the patterns of vibration. A single rope can 
support a series of vibrations. We can 
measure the frequencies of these. The 
frequency ratios are most important. They 
will provide us with the means to establish a 
new set of tones, the "physicist's scale." 

 
 
Fig. G-1. Rope or Spring of Length L in Equilibrium (No Waves). 
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The simplest periodic wave that a rope 

can support is one that we can start by 
pulling the middle of the rope up and letting 
go. The rope will vibrate up and down. We 
can call this the first mode of vibration for 
the rope. It is also the first mode of vibration 
for a string. See this first case in Fig. G-2. 
Imagine the crest swinging down into a 
trough and then up again. This mode is also 
called the fundamental or first harmonic. 

The next mode can be obtained by 
pulling the first half of the rope up and the 

second half down, and then letting go. You 
will have one crest and one trough (see the 
second case in Fig. G-2). As the rope 
vibrates, the left half will go from crest to 
trough etc. as the right half does the 
opposite. Fig. G-2 illustrates the first four 
modes of vibration for a rope or string. 
These patterns can also be obtained by 
shaking one end of a rope or spring, while 
your friend holds the other end. 

 
Note that the first mode consists of 

one half-wave, while the second consists 
of two half-waves, or one complete 
wavelength. Therefore, the wavelength 
of mode 2, i.e., the second harmonic, is 
shorter. One full wavelength fits between 
the walls for the second harmonic. The 
first harmonic has such a long 
wavelength that just one half the 
wavelength (crest or trough) fits between 
the walls. 

Since the speed of the waves is 
constant and determined by the rope or 
medium properties, we know that if you 
decrease the wavelength, the frequency 
increases. The second harmonic has 
half the wavelength of the first harmonic, 
therefore, the second harmonic has 
twice the frequency. 

It is easy to measure the frequencies 
of rope or spring waves and directly 
verify the above. Can you reason in a 
similar fashion to determine the 
frequencies for the third and fourth 
harmonics? 
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Waves normally want to travel down the 
rope. But the rope waves hit the fixed ends 
tied to the brick walls. The waves reflect 
back and forth constantly. However, for 
some special frequencies the reflecting 
waves interfere to establish the patterns 
such as those in Fig. G-2 (also see Fig. G-3 
below). These special waves are called 
standing waves. The patterns are 
essentially fixed, or "standing." There are 
points along the rope where the rope does 
not move. These points are called nodes. 

They are marked by the letter "N" in Fig. G-
3.  Note that the fixed ends at the walls are 
always nodes. 

There are other points through which 
the rope swings to extremes in its 
movement. These points along the 
horizontal are called antinodes and are 
marked with the letter A. Sketch the fifth 
harmonic underneath the fourth harmonic in 
Fig. G-3 and indicate the nodes and 
antinodes. 

 
 
Fig. G-3. Nodes (N) and Antinodes (A). 
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Look at the second harmonic in Fig. G-
4. One complete wavelength fits nicely 
between the two walls. There is one crest 
and one trough in the snapshot of the 
second wave depicted in Fig. G-4. 
Therefore, the wavelength for the second 

harmonic is L, i.e., λ
2
 = L. Another easy 

harmonic to look at is the fourth harmonic. 
Here two complete wavelengths fit between 

the walls. The wavelength λ
4
 = L/2. 

A fast way to understand all of the 
harmonics is to note that the first harmonic 

has one half-wave, the second has two 
half-waves, the third three and so on. 

The first harmonic has wavelength 2L. 
Don't worry that it never has a complete 
one between the walls. Only the second 
harmonic has a perfect match of one 
wavelength between the walls. Then as you 
squeeze more and more half-waves in, the 
wavelength must get shorter. If you 
squeeze in two, the wavelength shortens to 
1/2 of what it was before. If you squeeze in 
3 instead, the wavelength is 1/3 of the 
original wavelength for the first harmonic. 

 
 
Fig. G-4. Wavelengths of the First Four Harmonics. 
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The Overtone Series 
 

The standing waves for the string or 
rope are the harmonics. We list in Table G-
1 the first eight harmonics. Note that the 
wavelengths are easily determined. As we 
squeeze in more and more half-waves, the 
wavelengths get shorter. 

Compare the 5th harmonic with the 1st. 
The 1st harmonic has one half-wave fitting 
across the entire length of the string. The 
5th harmonic has 5 half-waves in this same 
distance. Therefore, each of these must be 
smaller. In fact, if we can fit 5 in where 
before we had 1, each half-wave must be 
1/5 of what we had for the 1st harmonic. 

Each smaller half-wave for the 5th 
harmonic is L/5. But since this is a half-
wave, we need to multiply by 2 to get a 
complete wave. 

The entry in Table G-1 for the 
wavelength of the 5th harmonic is 2L/5. To 
see this one more way, sketch the 5th 
harmonic. You should have 5 half-waves 
between the fixed ends. Let each half-wave 
be 10 cm. Then your length L is 50 cm. A 
complete wavelength consists of two half-
waves, a crest and a trough. This complete 
wave is then 20 cm, or 2/5 of the length L. 
This is the (2L)/5 found in the table below. 

 
 
Table G-1. The First Eight Harmonics 
 

 
 
 

The frequencies in Table G-1 are 

obtained by recalling our wave relation λ f = 
v. If you halve the wavelength, the 
frequency doubles since the product is a 
constant, the speed. The speed depends 
on the properties of the string such as its 
mass and tension. If your wavelength 
reduces to 1/3 of its original length, the 
frequency triples and so on. So whatever 

the denominator is in the wavelength 
column, that number multiplies our original 
frequency, which we take to be f. 

The first harmonic is also called the 
fundamental. The frequency "f" represents 
the frequency of the fundamental or first 
harmonic. The first few frequencies can 
also be measured directly using a spring. 
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The last column in Table G-1 gives the 
interval jump from the fundamental. Note 
that all the harmonics beyond the 
fundamental have frequencies that keep 
increasing. These are called overtones 
since their tones are higher or over the 
fundamental. The approximate positions of 
these tones in musical  notation is given in 
Fig. G-5, where we have arbitrarily chosen 
the fundamental. The first overtone is the 
second harmonic H2, and it is an octave 
higher. Refer to the previous chapter for a 
review of intervals and frequency ratios. 
There we learned that a frequency ratio of 
2:1 corresponds to an octave. The 
frequency ratio of H2 to H1 is 2 since H2 
has frequency 2f and H1 has frequency f. 

The third harmonic H3 (frequency 3f), 
compared to the second harmonic H2 
(frequency 2f), gives us a frequency ratio of 
3:2. This corresponds to a fifth. Therefore, 
the position of H3 relative to H1 is the 

interval of one octave (to get to H2) plus an 
additional interval of a fifth (to get from H2 
to H3). To see where we are at H4, simply 
note that to get there from H1, we double 
the frequency two times. Double f and you 
get 2f; double again and you get 4f. We 
jump two octaves since every time you 
double the frequency, you go up an octave. 

H5 relative to H4 has a frequency ratio 
of 5:4, which is the interval of a third. H6 
compared to H4 has a ratio 6:4, which is 
also 3:2 by reducing. This is a fifth. So to 
get to H6, jump 2 octaves to get to H4, then 
an additional fifth to get to H6. We cannot 
determine H7 from information in the 
previous chapter. We list it in parentheses 
for this reason and also because this 
interval is very approximate anyway. 
Finally, to get to H8, you double the 
frequency of the fundamental 3 times: f 
to�2f, 2f to 4f, and 4f to 8f. This implies 
three octaves. 

 
Fig. G-5. Fundamental (H1) and the First Seven Overtones. 
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Mersenne's Laws 
 
 Mersenne listed in the early 1600s the 
properties of the string that determine the 
fundamental frequency or pitch. The first 
property is length. The second two 

properties, tension and mass, effect the 
speed of the waves on the string, thereby, 
influencing the fundamental. See Fig. G-6 
below. 

 
 
   Mersenne's First Law states that the longer the string, the lower the frequency or pitch. We 
are accustomed to hearing the deep sounds coming from long strings on a bass. 
 
   Mersenne's Second Law states that the greater the tension in the string, the higher the 
frequency or pitch. When a guitar string is tightened, the pitch is raised. This is how strings are 
tuned. You use your hand to turn the pin that tightens strings on guitars and violins. You need 
to use a tuning instrument for the piano. 
 
   Mersenne's Third Law states that heavier strings result in lower frequencies or pitches. Look 
inside a piano. The strings down in the bass region are much thicker than the strings at the top 
end. You will also see that the strings vary in length. Tension is employed to hold the strings in 
place and give them the correct fundamental frequencies of vibration. 
 
 
When strings are played, the vibration 
mainly consists of the fundamental. 
However, overtones are present in the 

usual complex vibrations. We will learn in a 
future chapter that it's the overtones that 
determine the timbre of a periodic wave. 

 
 
 
Fig. G-6. Mersenne's Three Laws. 
 

 
 
 
 

--- End of Chapter G --- 


