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H. Pipes 
 

We proceed now to the study of 
standing waves in pipes. The standing 
waves in the pipe are actually sound 
waves. We cannot see sound waves in air. 
However, we can readily hear the tones. 
The advantage of our earlier 
experimentation with ropes (or springs) is 
that we can see the standing waves. The 
disadvantage is that we cannot hear the 
rope waves. With pipes, we can hear the 
waves but not see them. After studying both 
strings and pipes, you will have an excellent 
understanding of standing waves. 
 
Open Pipes 
 

The first pipes we will consider are open 
at each end. These are called open pipes. 
You can look through them. They are 
cylinders. The air inside vibrates as 
longitudinal standing waves. We can use 
the slinky as a model to help us visualize 
what the air does. We replace the open 
pipe by a slinky. Note that the ends of the 

slinky are free. This corresponds to the 
open ends of the pipe where the air can 
vibrate freely at the ends. If you are worried 
about gravity, imagine the slinky in outer 
space inside the space shuttle. 

Fig. H-1 illustrates a slinky with the 
simplest type of oscillation. The edges of 
the slinky move in and squeeze the center 
region, then move out and stretch the 
middle region. This motion repeats. The 
movement indicated in Fig. H-1 describes 
the fundamental standing-wave pattern for 
a longitudinal wave. Try to think of a simpler 
vibrational mode for the slinky. You will not 
be able to. Fig. H-1 then depicts the 
fundamental for the slinky. We will see 
shortly that one-half wavelength is 
depicted in Fig. H-1. 

The layers of air in an open pipe move 
in a similar fashion. Due to the difficulty in 
sketching and analyzing longitudinal waves, 
we will once again draw analogies with 
transverse waves. 

 
 
Fig. H-1. Simplest Standing Wave on a Slinky. 
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The center of the slinky goes through 

compressions and rarefactions. These are 
fluctuations in pressure. Imagine being the 
slinky ringlet in the center. You get 
squeezed, then stretched. Here, the 
maximum changes take place. We have 
designated the points where the greatest 
changes from equilibrium occur as 
antinodes. 

See Fig. H-2 for the antinode in the 
slinky. The edges of the slinky are never 
stretched or compressed. Therefore, they 
are nodes. The center diagram in Fig. H-2 
represents a pipe, with longitudinal waves 
in air. 
 

 
The air at the center of the pipe goes 

through high and low pressures as 
compressions and rarefactions occupy the 
center. The air at the edges is free to move 

and stay at equilibrium pressure. The air 
layers at the edges never get compressed 
or rarefied. You can remember this by 
observing that the air near the edges is in 
direct contact with the ambient air in the 
room, which air is at equilibrium pressure. 

Similarly, in our example with the rope 
(lowest diagram in Fig. H-2), it is the center 
that experiences extremes. At one time, the 
rope is very high in the center (a crest), 
later it is at the lowest extreme (a trough). 
The ends of the rope remain at equilibrium, 
so the ends are nodes. 

Note the excellent correspondence 
among all three systems in Fig. H-2. We will 
find the similarities between the pipe and 
the string most meaningful. As the string or 
rope wave swings from crest to trough, the 
pipe wave changes in the central region 
from one of compression to rarefaction. 

There is a one-to-one correspondence 
for the node and antinode regions. We will 
be able to use this fact to determine the 
series of standing-wave patterns for the 
open pipe. 

Our plan is to revisit the string and to 
further develop the analogies found in Fig. 
H-2. In this way we will be guided by the 
string. Due to the correspondences 
between strings and open pipes, we expect 
that the open pipe will have the same 
harmonic series as the string. The ends of 
the pipe replace the ends of the string. We 
will copy the node-antinode structure from 
the string vibrations over to the open pipe 
for each harmonic in order to find the nodes 
and antinodes along the pipe. 
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Fig. H-3 below shows the application of 

string oscillations to determine the standing 
waves in an open pipe. The analogy 
indicates that the same harmonics will be 
supported on the open pipe. If the lengths 
of the string and open pipe are the same, 
then the spacing of the nodes and 
antinodes will be the same. Such spacing 
determines the wavelength in each case. 
Therefore, the wavelengths will be the 
same. The frequencies will differ since the 
speeds of the waves are not the same on 
the string and in the pipe. 

But we never committed ourselves to a 
specific fundamental frequency with strings. 
We simply called the fundamental 

frequency "f."  Therefore, everything applies 
here. 

The waves on the string are string 
waves. These transverse string waves 
shake the air surrounding them and 
produce sound waves in air. On the other 
hand, the waves in the pipe are already 
sound waves, waves vibrating in the air 
inside the open pipe. Note that the distance 
between a node and antinode is a quarter-
wave. Recall that for the first harmonic, we 
have one half-wave. See the labeling "N-A-
N" for this case in Fig. H-3. Note that from 
"N" to "A" and from "A" to "N" are quarter-
waves. 

 
 
Fig. H-3. Using the String to Determine the Standing Waves for the Open Pipe. 
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Table H-1 reproduces the first eight 
harmonics since these also apply to open 
pipes. The fundamental for the open pipe is 
determined by the length of the pipe and 
the speed of sound in air, the medium 
supporting the standing waves. Whatever 
this frequency happens to be, we call it "f." 
Then, the second harmonic (or first 
overtone) has frequency 2f, the third 
harmonic (second overtone) has frequency 
3f, and so on. 

The fundamental for the string is 
determined by the length of the string 
(Mersenne's First Law) and the speed of 
the waves on the string. The wave speed 
on the string is in turn dependent on the 

tension in the string (Mersenne's Second 
Law) and the heaviness (mass) of the string 
(Mersenne's Third Law). 

The fundamental for the open pipe is 
determined by the length of the pipe, as has 
been noted above. We can say that the 
speed of sound inside the pipe is likewise 
determined by the medium inside. We 
assume it is air, but it can be some other 
gas. The speed of sound in the gas is in 
turn dependent on medium properties such 
as the temperature, pressure, and the 
density of the gas. However, to some 
extent, these properties are dependent on 
each other. 

 
 

 

Table H-1. The First Eight Harmonics (Standing Waves on Strings and in Open Pipes). 
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Fig. H-4 lists the first eight harmonics 
again. We encountered this figure in our 
study of strings. The significance of 
harmonics is even more profound now that 
we find them generated by open pipes as 

well as strings. The two basic methods of 
producing sound in nature (strings and 
pipes) give us the harmonic series. This set 
of harmonic tones is nature's scale or, what 
we call in this text, the "physicist's scale." 

 
 
Fig. H-4. The First Eight Harmonics (Generated by Strings and Open Pipes). 
 

 
 

A convenient way to demonstrate 
overtones is to use an inexpensive toy, the 
Twirl-a-Tune or Whirl-a-Tune (see Fig. H-
5). The Twirl-A-Tune is a corrugated plastic 
tube with a handle at one end. It produces 
overtones when whirled around. Air rushes 
up the tube when twirled. The rush of air 
against the ridges and valleys of the tube 
excites the tube into vibrating at special 
frequencies - the overtone series for the 
tube. The faster you twirl, the higher the 
overtones you obtain. The toy is too 
excitable to get the fundamental. It readily 
produces the second harmonic or first 
overtone. 
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Up until this point we have considered 
nodes and anitnodes for pipes in terms of 
pressure. A pressure node is a place where 
the pressure remains at the equilibrium 
pressure. A pressure antinode occurs when 
the point goes through periods of increased 
pressure (compressions) and times of 
lowered pressure (rarefactions). 

Note that the ends of an open pipe are 
always pressure nodes since the air is free 
to move and maintain equilibrium. It is 
never allowed to compress. This is 
analogous to the nodes at the ends of a 
string, where the string remains at 
equilibrium. But note an important 
distinction. The rope ends are fixed, not 
allowed to move, while the air layers at the 
ends of an open pipe do move. This 
presents no problem because equilibrium is 
maintained in each case. 

However, we like to define another kind 
of node-antinode for pipes, one that is 
defined in terms of displacement (motion) 
instead of pressure equilibrium. If you think 
in terms of displacement or movement, then 
a node is a place that doesn't move. 

An antinode is a place that undergoes 
the maximum motion. The nodes and 
antinodes on a string are of the 
displacement type. A string node means the 

string doesn't move there. But with pipes, 
both pressure and displacement 
descriptions apply. So we have both kinds 
of nodes. However we must be careful. 

At a pressure node, like at the ends of a 
pipe, the air layers are free to move and 
they do, to maintain equilibrium pressure. 
Because the end layers of air move, these 
regions are displacement antinodes. On the 
other hand, at the places where 
compressions and rarefactions occur, the 
central air layer does not move. Recall the 
slinky ringlet that gets pushed on from both 
sides and then stretched equally from both 
sides. It doesn't move as it gets squeezed 
and stretched. Therefore, this ringlet where 
a pressure antinode occurs, is the place 
where we have a displacement node. 

Remember it this way. A pressure node 
is a displacement antinode and a pressure 
antinode is a displacement node. They are 
opposite of each other. This feature is 
illustrated in Fig. H-6 below. Note the 
shorthand notation for displacement nodes 
and antinodes. A displacement node is a 
vertical line, indicating no motion. The 
dashes indicate motion, displacement 
antinodes. When we draw these near the 
ends, we extend them slightly since motion 
overshoots the edges (think of a slinky). 

 
 
Fig. H-6. Types of Nodes and Antinodes. 
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Fig. H-7 illustrates the first four standing 
waves in an open pipe, where displacement 
nodes and antinodes are employed instead 
of pressure nodes and antinodes. The 
results are opposite the pressure 
description. Wherever there was a node 
before, now there's an antinode and vice 
versa. 

The shorthand notation for displacement 
nodes is included in the diagrams at the 
right in Fig. H-7. There is a quick way to 
remember these. Always sketch a dash "-" 
at each end. You need the number of 
vertical lines "|" that corresponds to the 

harmonic number, e.g., the 4th harmonic 
has 4 vertical lines. Remember you never 
have two nodes in a row; there is always an 
antinode in between. So you alternate 
these. 

The only problem is that it's a little hard 
to space them evenly the first time you try 
it. It helps if you remember one more thing. 
For odd harmonics, there is a vertical line in 
the center; for even, there is a dash in the 
center. The shorthand notation for 
displacement nodes will be very helpful 
when we take up the study of closed pipes 
next. 

 
 
Fig. H-7. The First Four Standing Waves in an Open Pipe Defined by Displacement. 
 

 
 
Closed Pipes 
 
   A closed pipe is a pipe closed at one end. 
See Fig. H-8 below. We see immediately 
that the standing-wave patterns will be 
different. The closed end forces a 

displacement node there, a place where 
there is no motion because "you are up 
against the wall." The other end is open, 
free, a displacement antinode. Sketch a 
little dash at this end. You have the first 
standing wave! 

 
 
Fig. H-8. Closed Pipe. 
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We will use an important observation we 
made earlier concerning quarter-waves. 
The fundamental for the closed pipe is 
compared to that of the open pipe in Fig. H-
9 below. For the open pipe we find one half-
wave fitted to the pipe length L. The half-
wave is spanned by going from an antinode 
to node and then from a node to an 

antinode (see open pipe in Fig. H-9). Going 
from the antinode to node takes you one 
half the distance across the half-wave. 
Therefore, an antinode to a node gives us a 
quarter-wave. Likewise, going from the 
center node to an antinode is also a 
quarter-wave. We state these important 
observations below. 

 
 
  Between a node and antinode is a quarter-wave (quarter of the wavelength). 
 

Between an antinode and node is a quarter-wave (quarter of the wavelength). 
 

Now look at the closed pipe in Fig. H-9. 
We surely have a displacement node at the 
closed end. There is no motion at the wall. 
We also have the usual displacement 
antinode at the open end. But a node is 
always followed by an antinode and vice 
versa. Therefore, the standing wave in Fig. 
H-9 is the simplest standing wave for a 
closed pipe. 

Imagine a slinky with the left end glued 
to a wall and the right end free to move. 
Now pull the right end of the slinky and let 
go. The right end oscillates in and out at the 
right end. The left end stays fixed to the 
wall. You have the slinky version of the 
fundamental for a closed pipe. 

 
 
Fig. H-9. Fundamentals for Open and Closed Pipes (Displacement Nodes). 
 

 
 
  

The single quarter-wave in the closed 
pipe in Fig. H-9 above is twice the length of 
each of the two smaller quarter-waves 
found in the open pipe above it. The 
wavelength of the fundamental for the 
closed pipe is therefore twice as long as the 
fundamental wavelength for the same-size 
open pipe. If we increase the wavelength, 
we lower the frequency. Since the 

wavelength is doubled for the closed pipe, 
the frequency is halved. 

The open-pipe fundamental has twice 
the frequency of the closed-pipe 
fundamental and is therefore an octave 
higher. Alternatively, we can say that the 
fundamental frequency of the closed pipe is 
an octave lower than that for the open pipe. 
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There are two secrets in understanding 
closed-pipe physics. First, if you close one 
end of an open pipe, you double the 
wavelength to 4L (lower the fundamental by 
an octave). Second, as we will see, the 

closed-pipe harmonics only includes the 
odd harmonics! These two important 
characteristics for closed pipes are stated 
below. 

 
 
  1. Close one end of an open pipe and the wavelength doubles to 4L. 
 

2. The harmonic series for closed pipes includes only the odd harmonics. 
 
 

The second observation above 
becomes evident by studying Fig. H-10 
below. For the first mode of vibration we 
have one quarter-wave fitted to L. 
Therefore, the wavelength is 4L. Do not 
worry about realizing an entire wavelength 
within the distance L. This only happens for 
H2 for the string or H2 for the open pipe. 

Mode 1 for the closed pipe has one 
vertical line (at the wall) and one dash (at 
the open end). To get the next mode, we 
squeeze in another pair (the "A" and "N" 
inside the pipe in Fig. H-10). And herein lies 
the second secret. There are now three 

quarter waves. From left to right these are 
"N" to "A," "A" to "N," and "N" to "A." The 
squeezed wavelength is now 1/3 of what it 
was before. The frequency is triple. This is 
the third harmonic. 

We skipped the second harmonic! The 
next mode adds another antinode-node pair 
resulting in 5 quarter-waves. Now, the 
wavelength is 1/5 of what we started with 
and the frequency is 5 times the 
fundamental. This gives us the fifth 
harmonic. We skipped the fourth harmonic. 
Can you work out the next case? 

 
 
Fig. H-10. Standing Waves for Closed Pipe (Odd Harmonics Only). 
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The results for the first few harmonics 
for the closed pipe are found in Table H-2 
below. Note the two basic secrets we 
discussed earlier. This enables us to 
generate Table H-2 from our previous table 
for the strings and open pipes. First, we 
note that when we close one end of an 
open pipe, the wavelength doubles to 4L. 
So we replace 2L (result for open pipe) by 
4L (result for closed pipe) in our table. We 
always list "f" for the fundamental frequency 
by definition. 

The fundamental is our reference 
frequency. So even though the closed pipe 
drops an octave relative to the original open 
pipe, we still use "f" for the fundamental. 
You might say we redefine what is meant 
by "f." This is an important convention. It is 
always most convenient to call the 
frequency of the first standing wave "f" and 
relate all overtones to "f." 

Second, we note that the closed pipe 
only has odd harmonics. So we strike out 
all the even harmonics from our list and we 
are finished. We have Table H-2. 

 
 
Table H-2. The First Few Harmonics for a Closed Pipe. 
 

 
 
 

We can find an open pipe and a closed 
pipe of different sizes so that each has the 
same fundamental. The closed pipe has to 
be one half as long. This offsets the drop in 
frequency we get by closing one end of an 
open pipe. Cutting a pipe in half doubles its 
frequency because we halve the 
wavelength by our cut. This compensates 
for the closed end. In summary, close one 

end of an open pipe and the frequency 
drops an octave. Now cut the closed pipe 
so that the new open end is half as far from 
the closed end. The closed pipe is one half 
its original size. This pushes the 
fundamental back up an octave. Fig, H-11 
depicts the first few harmonics of an open 
pipe and a matched closed pipe. 
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As before, we point out that the notes on 
the musical staff are approximate. The 
scale in use today does not use perfect 
ratios except for the octave. Today's 
frequency assignment for the notes is 

called equal temperament. We will explain 
what this is in a later chapter. We also point 
out that the seventh harmonic is 
considerably approximate. 

 
 
Fig. H-11. Harmonics for Matched Open and Closed Pipes. 
 

 
 

The fundamental in Fig. H-11 is about 
60 Hz. This answer is based on the position 
of the fundamental on the musical staff. We 
will learn later how to determine the length 
of an open pipe necessary to produce a 

specific fundamental frequency. For now, 
we simply state the result. The open pipe 
needs to be almost 3 m. This is long. But 
then, this is a very low pitch. The closed 
pipe needs to be half this length. 
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--- End of Chapter H --- 


