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S. Perception 
 

This chapter builds on the biology of the 
previous chapter. The emphasis here is on 
perception. This topic falls in the area of 
perceptual psychology. The brain receives 
the information from the ear by way of the 
auditory nerve. The sense of sound is 

perceived by the brain. If we adhere to the 
strictest definition of sound, which includes 
external vibrations and internal perception, 
then there must be a brain for sound to 
exist. In this viewpoint, the very definition 
includes the experience of sound. 

 
The Place Theory of Hearing 
 

The place theory of hearing states that 
the place where hair cilia get stimulated 
along the basilar membrane determines the 
perceived frequency. This is supported by 
observation. However, this "place 
observation" cannot explain some 
phenomena. Playing a specific tone excites 
the hair cilia in the corresponding region 
along the basilar membrane. Playing the 
tone louder stimulates the hair cilia more 
and this is perceived as louder. 

However, experiments in the 1930s 
revealed that different pitches carefully 
matched for loudness were not perceived to 
be equally loud. In other words, amplitude 
doesn't solely determine loudness. Pitch 
influences loudness. We know this from 
experience since we find high-pitched tones 
loud and irritating. You might try to defend 
the place theory of hearing by saying that it 
is easier to stimulate the stiff region of the 
basilar membrane. Therefore, high-pitches 
will of course be perceived to be louder. But 
maybe this is not the correct analysis. 
Perhaps other factors and the brain play a 
role. 

There is another observation that 
presents difficulties if we try to explain 
everything by the place theory of hearing. 
Psychologists have found that we can 
perceive raises in pitch when tones are 
increased in loudness. We might defend the 
place theory of hearing by reasoning as 
follows. If you increase the loudness, the 
hair cilia shake so much that you get some 
neighbors shaking also. Since we assumed 
above that the stiffer end of the basilar 

membrane responds better, we expect to 
excite some neighbors at the higher-
frequency end more. This raises the tone. 
But is it enough? Wouldn't the original hair 
cilia be shaking more wildly and 
overshadow the higher pitch. These issues 
are being studied today. 

You get the point. We are in gray areas 
on some of these questions. So although 
the place theory of hearing is based on the 
observed spacing of frequency sensitivity 
along the basilar membrane, it does have 
limitations in explaining some perceptual 
phenomena. 

Don’t be discouraged by this. Compared 
to physics, psychology is really hard. The 
brain and ear are far more complex than 
compression waves traveling through an 
elastic medium such as a slinky or air. Also, 
physics has been around longer, since the 
1600s. Psychology as a separate discipline 
began more recently in the 1800s. We may 
have to wait centuries before understanding 
some perceptual subtleties really well. 

Let's focus on some simple aspects of 
the place theory of hearing that we know to 
be true. Various frequencies are detected 
along the basilar membrane. Every equal 
step along the basilar membrane 
(approaching the oval window) results in 
doubling the frequency. Therefore, each 
step corresponds to a pitch increase of an 
octave. We can count the steps to go from 
20 Hz to 20,000 Hz, doubling the frequency 
each time. We arrive at 10 steps or 
octaves.
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Frequencies along the basilar 
membrane are seen the Fig. S-1. Most 
people will have trouble hearing 10 octaves. 
If we use our more practical range of 30 Hz 
to 16,000 Hz, we obtain 9 octaves. Note 
that in either range we use, each doubling 
step is still an octave. We just start at a 

different frequency (30 Hz) and make 9 
steps instead of 10. But since you need all 
10 steps starting from 20 Hz for the entire 
3.5-cm length of the basilar membrane, we 
can say that each octave corresponds to 
1/10 this amount, which is 0.35 cm or 3.5 
mm. 

 

 
The Decibel Scale 
 

We saw how the place theory of hearing 
gives us a basic understanding of our 
perception of frequency. Frequency is one 
of the three fundamental characteristics of 
periodic waves. The other two are 
amplitude and timbre. The place theory of 
hearing also provides us with the essential 
mechanism for detecting amplitude. The 
hair cilia, responding at a particular place 
along the basilar membrane determined by 
the frequency, get stimulated more when 
the amplitude of the sound is increased. 
The greater stimulation of the hair cilia gets 
sent to the brain through the auditory nerve. 

The ear detects a very impressive range 
of frequencies, from 20 to 20,000 Hz (about 
10 octaves). Likewise, the ear detects an 
impressive range of amplitudes. We can 
hear the barely audible sound made as a 
pin drops onto a soft cushion. We can also 
hear the full blast of an orchestra. We have 
to be careful that we do not expose 
ourselves to sounds that are too loud. 
These can damage our ears. We will take 
that subject up more fully in our next 
chapter where we discuss hearing loss. 

The way the ear is able to detect so 
many levels of loudness is due to the fact 
that it is stubborn in responding to a new 
level of loudness. The new stimulus must 

be much greater than the previous one to 
hear an appreciable increase. We 
encountered a similar idea in frequency 
detection. To stimulate the next neighboring 
group of hair cilia (another 3.5 mm along 
the basilar membrane), we need to really 
turn up the frequency. We need to be in the 
next octave. See Fig. S-2 for another 
sketch of the frequencies along the basilar 
membrane. Every time we make a 3.5-mm 
step along the basilar membrane, the 
frequency response doubles. In this way, 
the basilar membrane can pack the 
tremendous response range of 10 octaves 
into a total length of only 3.5 cm. 

The secret in understanding the strategy 
at work along the basilar membrane is to 
realize that equal steps mean you multiply 
instead of adding. We studied this earlier 
with the small step size of 3.5 mm. Every 
small step of this size results in doubling. 
However, you can take bigger steps. See 
Fig. S-2 for a larger step size. The secret 
still applies, but now you multiply by a 
different number. This number is 10 for the 
larger step size in Fig. S-2. This "secret" 
when applied to the psychology of 
perception is known as Weber's (VAY-
ber's) Law. 
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The organism will not perceive an equal-
step jump in perception unless the original 
stimulus is multiplied. To get the ear to 
respond at equal small steps along the 
basilar membrane, you double the 
frequency at each step. To get the ear to 

respond to equal large steps along the 
basilar membrane, you multiply the 
frequency by 10 at each step. Note that 
three of the smaller steps in Fig. S-2 are 
necessary to make one larger step in Fig. 
S-2. 

 

 
 

Weber's Law is usually discussed within 
the context of loudness. The same idea 
applies. If you want roughly equally-
perceived jumps in loudness, you need to 
multiply how many sources of the sound 
you have at each step. In fact, Weber's Law 
applies in this approximate way to the 
stimulation of all five senses. Table S-1 lists 
the application of Weber's Law to the five 
senses. We employ in Table S-1 the two 
different step sizes used in Fig. S-2, i.e., 
multiplying by 2 and multiplying by 10. 

There is nothing "sacred" about 
choosing multiplying factors of 2 and 10 in 
Table S-1. Weber's Law applies to any 
number. It just means that the size of the 
perceived jump will be different. Remember 
that 3 of the small "doubling" steps equal 
one of the larger "tenfold-increasing" steps. 
Refer again to Fig. S-2 to impress this on 
your memory. This can be also be 
understood from observing that doubling 
three times (2 x 2 x 2 = 8) gives us 
approximately a tenfold increase. 
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The study of stimuli in terms of math 
and physics is the subfield of perceptual 
psychology called psychophysics. Fechner 
(FECK-ner), considered the founder of 
experimental psychology, came up with a 
mathematical formula that embodies 
Weber's Law. Fechner was a physicist and 
early psychologist. Weber and Fechner 
both worked in the 1800s during the birth of 
psychology as a discipline. Weber's Law (or 
Fechner's mathematical equivalent) is not 
an exact law; however, it is useful as a 
starting point in analyzing perception. 
Fechner's Law states that a response is 
proportional to the logarithm of the stimulus: 
R = k log S. What's this? Logarithms? Don't 
worry. You already understand the law if 
you understand Table S-1. The formula is 
just the mathematical way of writing the 
information found in the table. 

The area of perception is one of the 
most challenging applications of 
mathematics and physics. It is part of the 
subject of experimental psychology. We are 
trying to come up with ways, using 
numbers, to describe how one responds to 
a stimulus. The detection system offers 
important clues. Here is where biology and 
physics come into play. The stiffness of the 
basilar membrane and its vibrating 
response to incoming sound is a case in 
point. Getting a mathematical handle on the 
perception of stimuli is called scaling. Our 
task now is to scale the perception of 
loudness. We will present the historical 
scaling based on Fechner's Law (also 
Weber's Law). The result is the decibel 
scale we use today as a practical way to 
measure sound levels. We sidestep 
working explicitly with Fechner's scaling 
formula, just as we avoid detailed equations 
elsewhere in this text. However, it should 

be stressed that although mathematics is 
important, it's even more important to 
understand what's behind the mathematics. 
What follows is the essence of the historical 
scaling law for the stimulus-response of 
loudness. 

The sound-level scale is given in Table 
S-2. It extends the reasoning of Table S-1, 
where Weber's Law is applied to the five 
senses. In both tables, we consider 
dropping pins. The scale numbers are 
simply counting numbers for the large-sized 
steps that now continue on for 14 phases. 
Each perceived jump (step) signifies a 
tenfold increase in the actual number of 
pins that drop. The threshold of human 
hearing is taken to be the sound made by 
the drop of a pin on a soft cushion. Sound-
level meters are designed to get accurate 
measures of levels. The examples in Table 
S-2 are approximate. Note the fundamental 
feature of Weber's Law. The scale rating 
proceeds by equal jumps or increments 
while the actual number of sources (pins) 
for the stimuli goes up by a tenfold increase 
at each step. 

The unit for the scale numbers is the 
bel, named after Alexander Graham Bell. 
Bell invented the telephone (1876) and 
made contributions to the study of sound. 
His mother was deaf and so was his wife. 
The third column in Table S-2 gives the 
number of decibels. The metric prefix deci 
means one tenth. One tenth of a bel (0.1 
bel) is one decibel (1 dB). The decibel is a 
smaller unit so you need more of them to 
make up the larger bel. Compared to the 
reference drop of one pin, a decibel level of 
140 is letting 100 trillion pins fall an 
equivalent distance on the appropriate 
surface material. 
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The number of pins used to make the 
sound gives us the intensity from the point 
of view of physics, not perception. The 
perceptual scale is the compressed scale 
that goes from 0 to 14 bels or 0 to 140 dB. 
We can consider our engineering method of 
measurement as noting the number of pins 
we drop to make the sound. So we can 
consider the number of pins we drop as our 
intensity. The bel scale is the sound-level 
scale to approximate our perception of 
sound. It can quickly be obtained by 
counting how many zeros there are after 
the 1 in the number of pins dropped. 
Therefore, for 100 pins we have 2 (since 
there are 2 zeros after the 1); for 1000 pins 
we have 3, and so on. 

Finally, to get the decibel column, 
multiply by the number of bels by 10. This is 
the prescription given by Fechner's Law: R 
= k log S. You obtain the stimulus (S) - the 

number of pins you drop. The "log" is the 
instruction to count how many zeros are 
after the 1. Then you multiply by k, which is 
our multiplier 10. Engineers like to write Ir 

instead of S. Ir stands for relative intensity; 

we always compare to the drop of 1 pin. 

Also, the Greek letter β (beta) is used 
instead of R (R is used for resistance). We 

will use β to stand for the sound-level 
response in dB. Then, Fechner's Law for 

sound level can be written as β = 10 log Ir. 

Engineers get precise with the standard 
of intensity for the drop of one pin. Imagine 
a drop-of-the-pin sound that is sustained. 
The energy coming to the area of your 
eardrum each moment must be equivalent 
to one trillionth of the energy of a one-watt 
light bulb falling on an area of one-meter 
square. This is indeed a small amount of 
energy. The pin, the cushion, falling height, 
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and distance away all affect the sound 
level. See Fig. S-3 for a quick overview of 

approximate sound levels. 

 

 
 

Table S-3 relates sound levels to the 
language used by composers to indicate on 
the music score how loud music should be 
played. These are called dynamic 
markings. They instruct the performer how 
softly or loudly to play specific passages 
and notes. These instructions to performers 
are traditionally given in Italian. The decibel 
equivalents given in Table S-3 are 
approximate. Performers know that sound 

levels are especially subjective due to an 
interesting feature of our perceptual 
process. We perceive a loud sound to be 
extra loud if it is preceded by silence. So if 
you have a ff passage coming up, play 
extra softly a little before. Our perceptual 
dependency on what comes before the 
sound is just one of the subtleties that 
makes perception a challenging subject to 
study. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



Copyright © 2012 Prof. Ruiz, UNCA S-7

Table S-4 below gives two handy rules 
for determining sound levels when we 
increase the number of sources. You may 
recognize that these rules are the 
expressions of Weber's Law as applied to 
the decibel scale. Remember our steps 
along the basilar membrane. There, one 

large step (tenfold increase) was equal to 
about three smaller ones (twofold 
increases). Doubling the number of sources 
represents the smaller step size in loudness 
(add 3 dB), while increasing the number of 
sources by a factor of ten is our larger step 
size (add 10 dB). 

 

 
 

A working example of the rules found in 
Table S-4 is given below in Fig. S-4. We 
start with one washing machine at 70 dB. 
Of course we need to be at the right 
distance. Assume that we can have more 
machines at the appropriate distance. 
Every time you double the amount of 
machines, you add 3 dB. Every time you 
multiply the number of machines by 10, you 
add 10 dB. To get the level for 50 
machines, step from 1 machine (70 dB) to 
10 machines (80 dB), then to 100 machines 

(90 dB), and cut the final number of 
machines in half. You then subtract 3 dB 
instead of adding. With our two rules, you 
can determine so many cases. You can 
easily estimate the levels for other amounts 
in between. For example, 7 machines 
produces about 78 dB. Why would 5 
machines give 77 dB? Do not make the 
common careless mistake and state that 2 
machines would be 2 x 70 dB = 140 dB. 
Note that 100 machines produce only 90 
dB. 
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The study of how frequency relates to 
loudness was undertaken in the 1930s. The 
reference for the sound-level scale (dB) is a 
1000-Hz tone. Think of a precise 
experiment where we do not drop pins but 
use flutes that produce a barely audible 
1000-Hz tone at a given distance. Then, at 
the proper distance, 1 such flute gives 0 dB, 
10 flutes give 10 dB, 100 flutes give 20 dB, 
and so on. If we work with another 
frequency, subjects perceive a different 
"loudness spectrum." 

   So we modify our table from the very 
early chapter concerning the physical and 
perceptual characteristics of sound. This 

table is reproduced in Table S-5. However, 
we add a qualifier to emphasize that the 
correspondence is approximate. 
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Fletcher and Munson (1933) made a 
study of the perception of equal loudness 
and how the sensitivity of the ear varies 
across the frequency spectrum. They 
started with the sound-level scale which 
assumes a 1000-Hz tone. They then 
presented subjects with different pitches. 
Imagine replacing the 1000-Hz flute with 
one at 500 Hz. We then play one of these, 
then 10, then 100, and so one. Of course, 
in practice one uses a tone generator and 
controls the energy output to simulate the 
series of cases, 1, 10, 100, 1000, and so 
on. Fletcher and Munson found that their 
subjects perceived different loudness levels 
for the different frequencies played at the 
same level according to a scientific 
instrument. For example, if we employ the 
1000-Hz flutes, we get a threshold 
response when one such flute is played. 
Now if we switch to a 50-Hz instrument 
(bass tone), we need 10,000 instruments to 
just get the subject to hear anything. This is 
40 dB higher! We are less sensitive to bass 
tones than we are to 1000 Hz. 

The Fletcher-Munson experiment 
carefully starts with a set pitch. We push up 
the decibel level, monitoring it on a 

scientific instrument, until the subject hears 
something. This establishes the threshold 
for the pitch. We then draw a curve across 
the audio spectrum which represents 
thresholds (see the lowest curve in Fig. S-
5). 

Other equal loudness curves are 
determined using 1000 Hz as the reference. 
By definition, the perceiver is in agreement 
with the sound-level meter at 1000 Hz. This 
phase of the experiment begins with the 
1000-Hz reference tone along with the pitch 
other than 1000 Hz. The reference is set to 
a decibel level according to the sound-level 
meter. For example, the 1000-Hz tone 
might be set to 30 dB. Then, the other tone 
with a different frequency is presented to 
the hearer. The hearer adjusts its volume 
so that the different frequency matches the 
loudness of the fixed 30-dB reference of 
1000 Hz. Tones that sound the same in 
loudness, are found to have different 
decibel levels according to the meter. In our 
above example, 40 dB at 50 Hz sounds as 
loud as 0 dB at 1000 Hz. To avoid 
confusion, it is said that they have the same 
value in phons, the subjective scale. 
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Find any point along any curve in Fig. S-
5 as follows. First choose a specific curve, 
then a point along that curve. Suppose you 
choose the 30-phon curve. You then slide 
along this curve to any point. Consider 
stopping at the point to the left, 
corresponding to 50 Hz (horizontal) and 60 
dB (vertical). This point tells us that in order 
to hear a tone of 50 Hz at the same level as 
the reference 1000-Hz tone at 30 dB, we 
need to make the 50-Hz tone 60 dB. In 
other words, 50 Hz at 60 dB has the same 
loudness as 1000 Hz at 30 dB. Each is said 
to have 30 phons. Note that the dB-value 
and phon-value agree at the 1000-Hz 
reference for all levels of intensity. 

As we move to the outer limits of human 
hearing, the curves rise. Focus on the 
lowest curve, the threshold curve. This 
curve describes barely audible sounds. The 
threshold curve gets higher at each end of 
the spectrum. Note the enhanced sensitivity 
near 3000 Hz. Here all the curves dip down. 
The ear canal is like a small pipe and has a 
resonance frequency near 3000 Hz. The 
ear canal amplifies sound near 3000 Hz as 
a resonance effect. The threshold for low 
frequencies is high. This difficulty in hearing 
low bass tones is actually good. Otherwise, 
we would hear the low-frequency sounds 
made inside our bodies. Since the ear is not 
very sensitive in the low-frequency range, 
sound-level meters have a special 
weighting mode (A-weighted) that discounts 
lower frequencies. Meters also usually have 
fast and slow response modes, the slow 
response giving more or less an averaged 
sound level. 

  
Other Perceptual Phenomena 
 
1. Masking. 
 
   When more than one sound is perceived, 
the louder sounds are heard more easily. 
Therefore, it is possible for a loud source to 
overpower a soft one. This can happen to 
the point where we no longer hear the soft 
one. This is called masking. We all have 
experienced the trouble of hearing 

something soft because something else is 
louder and distracting. 

White noise can help mask sounds. 
White noise presents us with all 
frequencies. We have encountered such 
examples as the fan, sound of the ocean, 
and rain. Putting on a fan helps some 
people go to sleep due to the masking 
effect. Distracting sounds are covered up 
by the soothing even-distribution of all 
frequencies. 
 
2. Periodicity Pitch. 
 

Masking is an example where loud 
sounds prevent us from hearing other 
sounds. Here we see that certain sounds 
can cause us to hear other sounds not 
originally present in the source. The place 
theory of hearing cannot explain why we 
perceive tones that are not present in the 
sound waves. Consider sending a 200-Hz 
sine wave to the ear along with a 300-Hz 
tone. The brain perceives the 200-Hz and 
300-Hz tones. It recognizes that these two 
tones can be thought of as the second (H2) 
and third (Hz) harmonics relative a 100-Hz 
sine wave. The brain registers at a lower 
level of intensity the fundamental at 100 Hz 
(H1), the periodicity pitch. A frequency-
analysis of the incoming waves is done by 
the ear-brain system, establishing and 
perceiving the fundamental! 

We saw that each periodic tone can be 
represented by a Fourier spectrum of 
harmonics. Most of the time the 
fundamental is the strongest component. 
The ear-brain expects the fundamental to 
be there and puts it in if it's not. This 
explains why we hear bass better than we 
should from a small 2-inch speaker. The 
low fundamental tones are lost to some 
extent, but the ear-brain system supplies 
them. The ear-brain knows they should be 
there. 

Now consider a rephrase of our earlier 
question about a tree falling in a forest. Is 
"sound" present for a fundamental tone if it 
is heard but there is no source making that 
frequency? 
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A periodicity theory of hearing has been 
developed based on observations that we 
hear fundamental tones not present in the 
incoming sound. In such a theory, Fourier 
analysis of incoming waves are relevant. 
Both the place theory of hearing and the 
periodicity theory of hearing are important 
in providing for a more complete picture of 
hearing. 
 
3. Aural Harmonics 
 

Another fascinating case of hearing 
components of sound not present in the 

original sound is experiencing aural 
harmonics. A sine wave has one harmonic, 
the fundamental (H1). However, if you play 
it loud enough, the eardrum can't vibrate 
through the distance it needs to. You get 
clipping of the wave as the eardrum 
reaches its limits. The information sent to 
the middle and inner ear is now no longer a 
sine wave. Therefore, you perceive 
overtones (aural harmonics), frequency 
components not in the original sound 
entering the ear.  See Fig. S-6 

 
 

The amplitude of the sine wave is so 
great in Fig. S-6 that the eardrum cannot 
faithfully reproduce it. The wave gets 
distorted. If we turn up the volume too high, 
the system is not able to handle it. 
Distortion can occur in making tapes if we 
tape the source with the amplifier setting 
too high. The strength of the amplified 
sound is indicated in recording equipment 
by a sound-level display to guide us. 
Whenever an electronic component distorts 
the shape of a sine wave, harmonics of the 
sine wave appear. This is referred to as 
harmonic distortion. 
 
4. Combination Tones. 

 
Playing two very loud sine waves 

causes us to hear additional tones beyond 

those discussed above. We hear the 
original tones, the sum and difference tones 
at low levels, and possibly even more 
tones. For example, if we play a 500-Hz 
tone very loud with a 700-Hz tone, we hear 
1200-Hz (sum) and 200 Hz (difference). 
The lower tone may be difficult to hear due 
to our lack of sensitivity to low pitch. 

The resulting frequencies are the 
combination tones made by combining the 
original frequencies. Other combinations 
found by adding and subtracting various 
multiples of the original frequencies may 
also be heard. How can you use beats to 
determine if a 1200-Hz tone is heard when 
a 500-Hz tone is played loudly with a 700-
Hz tone? 
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5. Binaural Effects. 
 
Binaural effects are phenomena that 

result from our having two ears. Just as two 
eyes (binocular vision) give us an excellent 
sense of three dimensions, two ears 
provide us with a better three-dimensional 
sense of hearing. With two ears, we can 
more easily tell from which direction a 
sound comes. Sounds at our left do not 
reach the right ear as well. The brain 
constantly compares the sound level at 
each ear to give us a perception of our 
surroundings. For long-wavelength bass 
tones, the brain relies more on a 
comparison of phases. When a 
compression reaches the closer ear, there 
is a delay before the compression reaches 
the farther ear due to the extra distance. So 
different parts of the wave cycle reach each 
ear at any given time. 

The important role of the brain in 
processing signals from the auditory nerve 
is evident in the following experiment using 

two ears. Earphones are employed to send 
a different signal into each ear. When the 
different tones are close in frequency, we 
hear beats. Even when care is taken to play 
the tones softly to eliminate any bone 
conduction in the skull, beats are still 
perceived. The conclusion is that the beats 
occur in the brain. When we usually hear 
beats, the waves combine physically 
outside the ear. The pressure waves add. 
The result is a fluctuation in the sound wave 
itself. You can hear it with one ear. 

When the tones are separated, they 
cannot physically add together. Each tone 
enters a different ear. However, the 
combination of these signals from the 
auditory nerve of each ear to the brain is 
processed in the brain. The brain effectively 
combines the waves in a way similar to the 
physical addition of wave amplitudes. The 
beats experienced are perceptual or 
psychological rather than physical. Do they 
really exist? Is there sound if a tree ... ? 

 
 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

--- End of Chapter S --- 


