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V. Musical Temperament 
 
 

We saw in the last chapter how the 
human voice system can produce a rich 
variety of sounds. Earlier, we learned how 
engineering electronics can generate sound 
and modify it. We also investigated the 
storing of sound on media such as records, 
tapes, and CDs. In the final chapters we 

turn to the musical production of sound with 
traditional instruments, until the very last 
chapter. It is fitting that most of the final 
phase of this text be dedicated to that which 
historically has provided our current culture 
with the rich esthetic experience of musical 
art. 

 
 
The Major Scale 
 

The major scale is depicted in Fig. V-1 
below. The frequency ratios are indicated 
for a perfect octave, perfect fifth, perfect 
fourth, and perfect major third. These 
intervals provide for the most consonant 
combinations of tones after the unison. The 
octave is so close to the sound of the 
unison (two identical notes sounding) that 
we proceed to the next ratio (the 3-to-2) to 

serve as a foundation for a system of music 
theory, the cycle of fifths. Movement by 
fifths is very pleasing. The traditional way to 
end a piece is to move from the fifth 
(dominant) to the root (tonic), achieving a 
sense of coming home and completion. 
Such a harmonic change  is called a 
cadence.

 
 

 
 

Jazz musicians employ the cycle of 
fifths often. Once the author had a heated 
debate with a sax player of 15 years who 
claimed it was the cycle of fourths instead. 
Finally the author realized that the cycle of 
fourths is in a sense the same as the cycle 
of fifths. If you move up by a fifth and call 
the new note Do, moving down by a fourth 

gives the Do that is an octave lower. Since 
Do defines the key, you have a transition to 
the same key in each case. Fig. V-2 
illustrates this connection. To move up by a 
fifth (3:2), multiply by 3/2. To move down a 
fourth (4:3), use 3/4 instead of 4/3 (in order 
to get a fourth lower). 
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The Twelve-Tone Scale 
 

 We are going to analyze the major 
scale, which is the standard eight-tone 
scale we become accustomed to in grade 
school. Our analysis will show that the 
"perceived jump" from note to note is not 
the same. Rather than rely on our ears to 
tell us this, we will reach this conclusion 
from mathematical analysis, using 
arithmetic. We will conclude that there is 
room for more notes in the major scale 
since some of the jumps are about twice as 
great as others. We can stick in an extra 
note here and there so that the perceptual 
jump from each note to the very next is the 
same. Recognition of this fact by hearing 
the notes is the experimental approach. 
Both methods agree. Good science 
requires that theory support experiment and 
vice versa. 

Fig. V-3 takes us through the analysis 
step by step. First we start with the major 
scale. We list the perfect ratios for the 8 
tones relative to the first note Do. This 
version of the major scale (the just major 
scale), as noted in an earlier chapter, is 
also called the just diatonic scale. We next 
express the frequency ratios as fractions. 
Note that these fractions are greater than 
one. A fraction is simply one number 
divided by another. As an example, 
consider the ratio 3:2. We write this ratio as 
3/2, getting ready to multiply our base 
frequency "f." The base frequency is the 
frequency we choose for Do. Therefore, we 
see (3/2)f in Fig. V-3. 

Next we take 240 Hz for Do as we did 
before. This makes the arithmetic easier. 
For the fifth, (3/2)f, the result is (3/2)240 = 
3(120) = 360 Hz. These have been worked 
out before in the text when we first 

established the just diatonic scale. You 
might want to review that chapter at this 
time. The frequencies reproduced in Fig. V-
3 are the same. To make our analysis even 
simpler, we divide each frequency by 10. 
Then, 240 becomes 240/10 = 24. A zero is 
knocked off each frequency. This particular 
realization of the just diatonic scale is too 
low to be practical, but it serves our 
purpose. As an exercise, start with 24 Hz 
and work out all the other frequencies using 
the appropriate ratios. 

The next row compares adjacent tones. 
The first two frequencies (24 Hz and 27 Hz) 
give a ratio comparison of 27/24. The next 
row expresses this ratio in reduced form: 
27/24 = 9/8. Note the importance of ratios. 
The perceived jumps in frequency are 
based on ratios. Remember our steps along 
the basilar membrane are organized by 
ratios (equal steps of 3.5 mm for each 2:1 
frequency ratio). If our 9/8 were 8/8 instead, 
we would have the same note. The 9/8 has 
an additional 1/8 beyond unity (i.e., 1). We 
use this 1/8 to denote the "extra 
contribution," the extra part beyond 1. We 
then consider 1/8 and 1/9 essentially the 
same size. If one pie is cut into 8 pieces 
and a second pie cut into 9 pieces, could 
you tell the difference between a 1/8-size 
slice and a 1/9-size slice? We also replace 
1/15 by 1/16 since these are even closer to 
being the same size. 

We are now ready to draw the big 
conclusion. There are 5 bigger "pieces of 
the pie" and 2 smaller pieces. We cut the 5 
big pieces in half so every new piece 
resulting has the same size. This introduces 
5 more tones. These are the 5 black keys 
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appearing on the keyboard for each octave. We have "derived" the black keys! 
 

 
 

 
 



Copyright © 2012 Prof. Ruiz, UNCA V-4

Now we have the 7 notes from Do to Ti 
and 5 additional notes. This gives us a 
twelve-tone scale. We consider the note an 
octave higher than Do (i.e., Do') as the 
beginning of the next 12 tones. For a 
moment, retreat to our major scale. Each 
step which has an extra contribution of 1/8 
is called a whole step or whole tone, while 
the steps with the extra 1/16 contribution 
are called half steps or semitones. In the 
new twelve-tone scale, all the steps are 
equal. You make 12 half steps in going 
from Do to the Do that is an octave higher 
(Do'). To step by whole tones on the twelve-
tone scale, just skip a note at each step. 

Our prior restriction to the major scale 
limits us in playing songs since many tunes 
use the additional notes we have added. 
We can give a formula for the major scale. 
From your starting note you proceed to by 
first making a whole step. You make a 
whole step by skipping the very next note 
(whether it is a black key or white key) and 
land on the note after the one you skip. For 
a half step, you go to the very next note. 
The formula for the major scale is: whole-
whole-half-whole-whole-whole-half (see 
Fig. V-4). Note that this formula consists of 
two whole-whole-half sections joined by a 
whole step or connection in the middle. The 
total number of steps in the scale is 7. 

Centuries ago some mystics found 
profound meaning in the formula for the 
major scale. We noted that Pythagoras was 
a mystic and mathematician. Nearly 2000 
years later, Kepler (1600) likewise felt that 
mystical secrets of the universe were to be 
found in numbers and formulas. In a sense, 
the professional physicist is not too far from 
this point of view. The secrets to 
understanding nature can be expressed in 
beautiful mathematical form. But the 
mystics went further. The seven steps of 

the scale meant much more. The number 7 
was considered sacred. We see this theme 
often in different historical settings: the 7 
days of the week, the early 7 celestial 
bodies of the crystalline spheres (Moon, 
Mercury, Venus, Sun, Mars, Jupiter, and 
Saturn), the 7 sacraments, the 7 colors of 
the spectrum, and the 7 steps of the 
musical scale. 

Some mystics gave meaning to the two 
half steps in the major scale. To them, 
these represented a break from the usual 
progression of whole tones. They applied 
this in everyday life by saying that all efforts 
following from an original aim (Do) can get 
sidetracked in two key places. One is after 
we get started and the other is at the very 
end. 

Have you every worked on a goal that 
proceeded smoothly for awhile (Do-Re-Mi) 
and then you reached a challenge (the half 
step from Mi to Fa)? Most people quit at 
this point. The cleaning of the room does 
not get completed, the term paper remains 
unfinished, you don't read the entire novel. 

However, if you apply a conscious effort 
at the challenging point (Mi-Fa), you go on 
smoothly again for awhile (Sol-La-Ti) until 
the very end. You can still fizzle out. The 
modern-day version of this law is Murphy's 
Law (originating in electrical engineering): 
"If something can go wrong, it will." And it 
usually does so at the least expected 
places - after we just start and think things 
are going well, and right when we think we 
are about to be finished. 

A scale with no half steps is the whole-
tone scale, which Debussy liked (see Fig. 
V-4). Another is the double-diminished 
scale, popular in jazz improvisation. 
Abbreviations are used for whole (W) and 
half (H) steps in the example for the double-
diminished scale in Fig. V-4. 
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There are many other scales with 
different formulas. Go to a piano and pick 
out the scales we have described: the 
major scale, the whole-tone scale, and the 
double-diminished scale. Use Fig. V-4 for 
assistance. Then try the natural minor scale 
(whole-half-whole-whole-half-whole-whole). 
The chromatic scale is the scale obtained 
by playing all the notes (half, half, half, 
etc.). The modern composer Schoenberg 
(SHERN-berg) liked the complete twelve-
tone scale and devised lines using the 
tones once and only once. These lines are 
called twelve-tone rows. 

They sound strange (modern) since a 
note can't be used more than once in the 
musical line. Try writing a sentence that 
uses each letter of the alphabet once and 
only once. It's impossible. But you can write 
a sentence that uses all the letters of the 
alphabet: "The quick brown fox jumped over 
lazy big cats." Can you think of another that 
uses less than 37 letters? How about just a 
group of words, following the modernist 
Schoenberg, where the meaning can be 
cryptic? 
 
Equal Temperament 
 
   Earlier in our treatment of whole steps, 
we considered that 1/8 and 1/9 were 
essentially equal. We did the same for 1/15 
and 1/16 (the half steps). We would like to 
have more precise definitions for half steps 
and whole steps. Historically the difficulty 
with tuning to perfect ratios presented 
problems. If you start with a different key to 
play a scale, the frequency ratios are not 
preserved in the new key. Temperament 
refers to the specific choices we make for 
the frequencies in our scale. The uniform 
manner in which frequencies are chosen in 

equal temperament is described in this 
section. 

The whole steps in our just diatonic 
scale have slightly different frequency ratios 
since really 1/8 is not exactly the same as 
1/9. The equal-tempered scale solves this 
problem by making all half steps precisely 
the same in such a way that by the time you 
reach the octave, the frequency has 
doubled. The perfect-frequency ratios are 
given up in favor of equal-frequency ratios 
between adjacent tones. The only perfect 
interval remaining is the octave. The fifths 
are no longer perfectly 3:2, the fourths no 
longer perfectly 4:3, etc. 

The remaining task is to find the magic 
ratio for the half step satisfying the criterion 
that 12 half steps give a perfect octave 
(2:1). This problem is identical to 
determining the annual interest rate 
(applied once yearly) needed so that your 
money doubles in 12 years. Each half step 
is analogous to each year. The growth in 
frequency from our example of 240 to 480 
takes 12 steps. We want the growth rate to 
be the same from step to step. Growth in 
frequency is analogous to growth in money. 

In banking, if you save your money, you 
get back the original amount plus interest. If 
your annual interest rate is 8% for the year, 
$100 earns you $8 at the end of the year. 
We assume interest is applied once yearly. 
Better deals apply interest earnings more 
than once a year. For example, if interest is 
compounded quarterly, every 3 months one 
applies 2% interest. This is one-fourth of 
the yearly rate so technically it is still 8%. 
However, applying the appropriate 
percentage more often results in a better 
deal for you, because your money starts to 
grow after 3 months. 
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Consider an interest rate of 10% and an 
initial amount of $100. After the year, the 
interest is $10. Our new amount is $110. 
We have the original $100 plus the $10 
interest. We leave the $110 in for another 
year. The interest the following year is 10% 
of $110. This is $11. Note that we not only 
receive an interest of $10 for the $100, but 
an additional $1 for the $10 of interest we 
made the first year. We are getting interest 
on interest in the second year. This is good 
news. To get the next year amount just 
multiply the last amount of money by 1.1. 
   Table V-1 gives growth patterns for 
several interest rates and a starting value of 

$240. Values in the table are rounded off. 
This is unlike what banks do. They keep 
fractional amounts over a penny. In the 
table, everything is carried from year to 
year in the calculator, rounding off annual 
amounts for table entries. Which case 
approximates the just-diatonic growth 
pattern at the far right of the table? We can 
cleverly answer without looking at the table.  
We know from before that each half step 
corresponds to approximately an excessive 
1/16. This fraction is about 0.06 in decimal 
form. That is 6% interest! 
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Using the 6% interest for the 
frequencies means that our new frequency 
is the old one plus 6%. To obtain the 6%-
increase we multiply the old frequency by 
0.06 or 1/16. The new frequency (original + 
6%-increase) can be obtained by 
multiplying the old frequency by 1 + 0.06, 
i.e., 1.06. However, we see that by the time 
we get to twelve steps or years, the answer 
is a little too high. In Table V-1, the amount 
for 240 after 12 years is 483 instead of 480. 
So 1.06 is slightly too high. 

We want to know that special number 
that we can multiply something by 12 times 
and arrive at twice our starting value. Let's 
call the special number "a." Then, 
multiplying 12 times, using the dot-symbol 
"⋅" for the multiplication symbol, we have 
 

 
 

Mathematicians call "a" the 12th root of 
2. The answer is a little less than 1.06 as 
we expect. It is given below. 
 

 
 

This is the number we multiply any 
frequency by to get the next one a half step 
higher. It corresponds to an interest of a 
little over 5.9%. It is almost 6%. How 
accurate in theory does this number need 
to be? This question is answered by 
perceptual psychologists. They study how 
close two frequencies need to be before we 
judge them to be the same. They research 

stimuli in general such as loudness, color, 
or taste. The difference between two stimuli 
where the stimuli cease to appear the same 
is called the just noticeable difference 
(JND). The just noticeable difference for 
frequency depends on where along the 
audio spectrum we are being challenged to 
make the match. 

Notice that when high notes are played 
on the piano, it is more difficult to tell them 
apart compared to notes in the middle 
range. On the average, the JND for 
frequencies in the range of musical 
instruments is about 1 Hz. With a starting 
frequency of 1000 Hz, in order to get 
accuracy of 1 Hz, we can use 1.059. This 
gives 1059 Hz. The author once wrote a 
computer program to generate all the 
equal-tempered frequencies on the piano. 
One should always use the best accuracy 
possible for the 12th root of two, find all the 
frequencies, then round to the nearest hertz 
at the end. 

Piano tuners establish an equal 
temperament for the middle octave, then 
pretty much tune the other notes 
proceeding by octaves. Traditionally tuners 
have used their ears. Some today use 
electronic devices for assistance. There is 
debate as to which can provide the best 
tuning. There is no question that a well-
trained tuner can do a superb job without 
electronic aid. Some argue that electronic 
devices get in the way when you strive for 
quality tuning. 
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Transposing 
 

We would like to construct an equal-
tempered set of 12 tones from which any 
other equal-tempered set, starting on a 
different first note, can be determined. So 
we choose 1 Hz for our first note and 
proceed. If you want to start with 300, then 
you multiply each tone of the sample set by 
300. Banks do this also with loans. For 
example, they give values based on $1000 
for home loans. If you want to borrow 
$105,000 and find out your interest 
payment, then you multiply the interest 
payment based on $1000 by 105. 

To maintain an analogy with finance, let 
1 stand for $1.00. Then, for our annual 
interest rate of  5.9%, we earn almost 6 
cents interest after one year. The bank will 

give you 5 cents interest and keep the 
fraction of a penny. But you might say 90% 
of a penny is so close to a penny. Too bad!  
The banks round down. They make much 
money this way. However, when we apply 
the interest formula below, we round in the 
standard way. After one year, we have 
$1.06. We obtain this by multiplying our 
$1.00 by 1.059. The 1 in 1.059 gives us 
back our original dollar and the 0.059 part 
gives us the 5.9 cents of interest. For the 12 
years or steps, we multiply by 1.059 twelve 
times. Actually more decimal places were 
used in the calculator and numbers 
rounded off last to get the results in Fig. V-
5. 

 
 

 
 
 

We can now apply Fig. V-5 to our 
favorite starting point, 240 Hz. Or, we might 
say we would like to put $240 in the bank 
and leave it there for 12 years. Our money 
will double to $480 after 12 years. We 
multiply each of the values in Fig. V-5 by 
240 to find out how much our money is 

worth year by year. We "transpose" the 
values in Fig. V-5 to a new starting point. 
Musicians transpose to other keys 
musically by playing in different keys rather 
than calculating frequencies. The concept is 
similar.
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The eight notes of the just diatonic scale 
are compared with equal-tempered 
frequencies in Table V-2. A calculator was 
employed that used an extremely accurate 
value for the 12th root of two for the equal-
tempered values. Then, frequency values 
were rounded off to the nearest one tenth of 

a hertz. The starting frequency for each 
scale was set to 240 Hz. Since the equal-
tempered scale preserves octave ratios of 
2:1, the ending notes are in exact 
agreement. The "black keys" of the equal-
tempered scale are not listed since they are 
not present in the just diatonic scale. 

 
 

 
 
 

The equal-tempered scale has a perfect 
ratio only at the octave. Perfect intervals in 
other places are lost. Remember that the 
JND in frequency at midrange is about 1 
Hz. Therefore, the frequency difference of 
0.6 Hz for the 2nd degree of the major 
scale is hardly noticed. However, the 2.4-
Hz difference for the 3rd degree exceeds 
the 1-Hz tolerance. The 3rd degree on the 
equal-tempered scale is slightly sharp (i.e., 
higher in frequency) relative to a perfect 
major third. The 1st and 8th degrees for the 
just diatonic and equal-tempered scales are 
in perfect agreement. The 2nd, 4th, and 5th 
degrees are very close. The 3rd, 6th, and 
7th degrees are not as close. 

To compare the scales in the next 
octave, double every frequency in Table V-
2. Consider the 6th degree. In Table V-2, 
the difference is 403.6 − 400 = 3.6 Hz. For 
the scale an octave higher, the difference 
between the 6th degrees is twice this: 807.2 

− 800 = 7.2 Hz. Things are worse. This 
trend continues. However, we lose our keen 

frequency discrimination in the highest 
octave of the piano. 
 
Musical Range 
 

The piano is an excellent guide for 
studying musical range. The piano has the 
largest range of all instruments except for 
some organs. The letter names for the 
notes are very convenient in discussing 
musical range. See Fig. V-6 for the letter 
names of the major scale. Piano students 
learn them by first remembering that "C" is 
the key to the left of the pair of black keys. 
The pattern repeats on the piano. Find any 
place where there are two black keys 
grouped and there is a "C" to the immediate 
left. The "D" is the key that's between the 
two black keys, "E" is to the right. The "F" is 
to the left of a group of three black keys and 
so on. If you are not a musician, next time 
you are near a piano, see how fast you can 
hit all the "D" notes on the piano from 
bottom to top. 
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Fig. V-7 displays the entire piano 
keyboard. The first note (lowest) on the 
piano is an "A." We use the convention that 
calls the first "C" on the piano C

1
. The note 

A1 is the "A" in the major scale that starts 

with C
1
. Therefore, we refer to the very first 

"A" on the piano as A
0
. 

Note that there are 7 complete scales 
starting with a "C." Since we added the 
black keys to the tones of the major scale, 
each complete scale is the chromatic scale 
with 12 notes. You can play a major scale 
starting on any of these 12 notes if you 
follow the formula for a major scale. There 
are 12 such scales, 7 for the white keys and 
5 for the black keys. 

Pianists spend hours learning to play 
these rapidly with both hands. The 7 
octaves of the 12-tone chromatic scale give 
us 7 x 12 = 84 keys. There are three 
additional keys at the bottom and the sole 
"C" at the top. The uppermost "C" supplies 
the highest 12-tone scale with its resolution 

Do. Therefore, there are 84 +3 + 1 = 88 
keys on the piano. 

The last item remaining is to fix the 
frequency of one note, to get started. 
Equal-temperament does the rest. The 
standard is to set A4 to 440 Hz. This is the 
note the first violinist hits on the piano when 
the orchestra tunes up for a piano concerto. 
You double 440 to get A

5
 and halve 440 to 

get A
3
 and so on in Fig. V-7. Multiplying 440 

Hz by 1.059 gives the next highest key, the 
black key to the right of A

4
. We refer to this 

key as A#
4
. The symbol "#" is called a 

sharp symbol. We say "A-sharp-4." Dividing 
440 by 1.059 gives us the black key to the 

left of A4, called Ab
4 or "A-flat-4." Note that 

Ab
4 is also the same as G#

4
. Sharp means 

move one half step to the right; flat means 
move one half step to the left. The piano 
frequencies range from 27.5 Hz (A

0
) to 

4186 Hz (C
8
). 
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An Exercise 
 
 
 

What are the frequencies for the “just diatonic” major scale if the first one is 120 Hz? Be sure 
to be able to work these out using the ratio for each of the intervals. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

--- End of Chapter V --- 


