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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter F Notes. "Let There Be Light" 

F1. The Wave Equation 
 
A function ( )f x  is shown with a peak at f(0). Denote this by writing (0)f peak= . If 

we shift this function to the right by a distance d , then the new function ( )h x  must be 

( ) ( )h x f x d= − . Here is how you can check this rule. Is the peak now at x d= ? Does 

( )h d peak= ? We check this below the figure. 

 

(0)f peak=    and   ( ) ( )h x f x d= −  

 

( ) ( ) (0)h d f d d f peak= − = =  

 
It checks out. Do you 
remember doing this often 
in trigonometry? If you shift 

the cosine by / 2π  to the 

right, you get the sine. 
 

sin cos( )
2

x x
π

= −  

 
The above relation also tells 
you that the sine of an 
angle in a right triangle 
equals the cosine of its 
complement. 
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Since ( )f x d−  is our shifted function to the right by a distance d , we can let 

d vt=  to obtain a traveling function to the right. Let's search for a differential equation 
for this function, i.e., we want a differential equation such that our traveling wave 

( )f x vt−  is the solution. Common practice is to use ψ  for a wave. So we write 

 

( , ) ( )x t f x vtψ = − , defining u x vt= − . Note that 1
u

x

∂
=

∂
 and 

u
v

t

∂
= −

∂
. 

 
Then we take derivatives in our quest for the "magic" differential wave equation, 
 

 

( , ) ( ) ( ) ( ) ( ) ( )
1

x t f x vt f u df u u df u df u

x x x du x du du

ψ∂ ∂ − ∂ ∂
= = = = ⋅ =

∂ ∂ ∂ ∂
 

 

( , ) ( ) ( ) ( ) ( )
( )

x t f x vt f u df u u df u
v

t t t du t du

ψ∂ ∂ − ∂ ∂
= = = = ⋅ −

∂ ∂ ∂ ∂
. 

 
 
We can now put together the following differential equation from the above. We find 
 
 

( , ) 1 ( , )x t x t

x v t

ψ ψ∂ ∂
= −

∂ ∂
 and write 

( , ) ( , )1R R
x t x t

x v t

ψ ψ∂ ∂
= −

∂ ∂
, 

 
 

adding the subscript R for "Right" to emphasize that this wave is traveling down the x 
axis in the positive direction. 

 
But for the wave traveling to the left, we must have the same equation with the velocity 
in the negative direction. This reverses the sign in front of v since u in that case would 
be u = x + vt with f(u) = f(x+vt). 
 

( , ) ( , )1L L
x t x t

x v t

ψ ψ∂ ∂
= +

∂ ∂
. 

 
 
This is not acceptable because now we have two differential equations and there is 
nothing special about right or left. We want a differential equation where the sign does 
not matter. So we proceed to the second derivative. 
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We start with 

 

( , ) ( )x t f x vtψ = −    and   u x vt= − , 

 

( , ) ( )x t df u

x du

ψ∂
=

∂
   and   

( , ) ( )x t df u
v

t du

ψ∂
= −

∂
, 

 
and take the second derivatives with respect to x and t. 
 
 

2 2 2

2 2 2

( , ) ( ) ( ) ( )x t df u d f u u d f u

x x du du x du

ψ∂ ∂ ∂
= = =

∂ ∂ ∂
 

 
 

2 2 2
2

2 2 2

( , ) ( ) ( ) ( )x t df u d f u u d f u
v v v

t t du du t du

ψ∂ ∂ ∂ 
= − = − = ∂ ∂ ∂ 

. 

 
This leads to 
 

2 2

2 2 2

( , ) 1 ( , )x t x t

x v t

ψ ψ∂ ∂
=

∂ ∂  

 
 
Note that when you square plus or minus v that you get positive v squared. This 
differential equation applies to waves moving to the left or to the right. This is the wave 
equation in one dimension. The general solution is a combination of a wave moving 
right and one moving left: 
 

( , ) ( ) ( )x t Af x vt Bg x vtψ = − + +  

 

For the wave equation in three dimensions where ( , , , )x y z tψ ψ= , we have 

 

2 2 2 2

2 2 2 2 2

1

x y z v t

ψ ψ ψ ψ∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂  
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With the del operator ∇ , we can write this very elegantly. First note that since 
 
 

i j k
x y z

∧ ∧ ∧∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂ , 

 
we have 

i j k i j k
x y z x y z

∧ ∧ ∧ ∧ ∧ ∧   ∂ ∂ ∂ ∂ ∂ ∂
∇ ⋅∇ = + + ⋅ + +   ∂ ∂ ∂ ∂ ∂ ∂   

 

 
2 2 2

2 2 2
x y z

∂ ∂ ∂
∇ ⋅∇ = + +

∂ ∂ ∂  

 
 
We make the shorthand definition 
 

2∇ ≡ ∇ ⋅∇  
 

The symbol 
2∇  is also called the Laplacian operator. 

 
So 

2 2 2 2

2 2 2 2 2

1

x y z v t

ψ ψ ψ ψ∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂  

 
 
can be neatly written as 
 

2
2

2 2

1

v t

ψ
ψ

∂
∇ =

∂  

 
 
You can remember where the v goes from dimensional analysis. Since distance equals 
velocity times time, your velocity has to go with the time t. Since we have the second 
derivative, think of distance as being squared and time as being squared. So you need 
the velocity squared. 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License 

 

F2. "Let There Be Light." Watch the video for a discussion of the variations below. 

 

 

Photos Courtesy www.zazzle.ca for Custom T-Shirts 
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For the free space 
Maxwell equations 
we are far away 
from any charge 
sources and 
currents. Thus, we 
set 

0ρ =  and 

0J
→

= . 
 

 

0

E
ρ

ε

→

∇ ⋅ =
 

0B
→

∇ ⋅ =  

0 0 0

E
x B J

t
µ µ ε

→
→ → ∂

∇ = +
∂  

B
x E

t

→
→ ∂

∇ = −
∂  

Free Space Equations 

0E
→

∇ ⋅ =  
 

0B
→

∇ ⋅ =  

0 0

E
x B

t
µ ε

→
→ ∂

∇ =
∂  

B
x E

t

→
→ ∂

∇ = −
∂  
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The free-space equations have beautiful symmetry and contain the secret about light. 
We play with these equations to see if a wave equation is supported. This is an example 
of theoretical physics at its best. We are in search of a discovery using theory only. 

We are in search for a second order differential equation so we go for a second 
derivative with respect to time. 

Take a derivative of the equation 0 0

E
B

t
µ ε

∂
∇× =

∂

��

��

 with respect to time. 

2

0 0 2
( )

E
B

t t
µ ε

∂ ∂
∇ × =

∂ ∂

��

��

 

2

0 0 2

B E

t t
µ ε

∂ ∂
∇× =

∂ ∂

�� ��

 

Now it's time to use the Maxwell equation with the 

B

t

∂

∂

��

, i.e., ( )
B

E
t

∂
∇ × = −

∂

��

��

, 

B
E

t

∂
= −∇×

∂

��

��

. 

Substituting this into our last equation gives us 

2

0 0 2
( )

E
E

t
µ ε

∂
∇× −∇ × =

∂

��

��

 

2

0 0 2
( )

E
E

t
µ ε

∂
∇× ∇× = −

∂

��

��
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Let's focus on ( )E∇× ∇×
��

. We do this by first calculating the curl of E
��

. 

( ) ( ) ( )
y yx xz z

x y z

i j k

E EE EE E
E i j k

x y z y z x z x y

E E E

∧ ∧ ∧

∧ ∧ ∧∂ ∂∂ ∂∂ ∂∂ ∂ ∂
∇× = = − − − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

��

Then 

( )

y yx xz z

i j k

E
x y z

E EE EE E

y z z x x y

∧ ∧ ∧

∂ ∂ ∂
∇× ∇ × =

∂ ∂ ∂

∂ ∂∂ ∂∂ ∂
− − −

∂ ∂ ∂ ∂ ∂ ∂

��

. 

Let's do the x-component first. 

( )
y x x z

x

E E E E
E

y x y z z x

∂ ∂ ∂ ∂∂ ∂  
∇× ∇× = − − −   ∂ ∂ ∂ ∂ ∂ ∂  

��

 

2 2 2 2

2 2
( )

y x x z
x

E E E E
E

y x y z z x

∂ ∂ ∂ ∂
∇× ∇× = − − +

∂ ∂ ∂ ∂ ∂ ∂

��

 

Flip the order of the derivatives for the first and last term to obtain 

2 2 2 2

2 2
( )

y x x z
x

E E E E
E

x y y z x z

∂ ∂ ∂ ∂
∇× ∇× = − − +

∂ ∂ ∂ ∂ ∂ ∂

��

. 
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2 2 22

2 2
( )

y x xz
x

E E EE
E

x y x z y z

∂ ∂ ∂∂
∇× ∇× = + − −

∂ ∂ ∂ ∂ ∂ ∂

��

 

2 2

2 2
( )

y x xz
x

E E EE
E

x y z y z

∂  ∂ ∂∂∂
∇× ∇× = + − − 

∂ ∂ ∂ ∂ ∂ 

��

 

We now add to the right side zero in the form of 

2 2

2 2

x xE E

x x

∂ ∂
−

∂ ∂
: 

2 2 2

2 2 2
( )

yx x x xz
x

EE E E EE
E

x x y z x y z

∂ ∂ ∂ ∂ ∂∂∂
∇× ∇× = + + − − − 

∂ ∂ ∂ ∂ ∂ ∂ ∂ 

��

. 

 
 

2
( )x xE E E

x

∂  ∇× ∇× = ∇ ⋅ − ∇
 ∂

�� ��

 

 
Note that we have discovered the following powerful identity: 

2
( ) ( )E E E∇× ∇× = ∇ ∇ ⋅ − ∇
�� �� ��

 

But 0E∇ ⋅ =
��

 in free space. Therefore: 

2
( )x xE E∇× ∇× = −∇
��

 

 
There is nothing special about the x-direction. So the complete vector equation is 
 

2
( )E E∇× ∇× = −∇
�� ��

,  consistent also from our above identity. 

 
Putting it all to together, our equation 

2

0 0 2
( )

E
E

t
µ ε

∂
∇× ∇ × = −

∂

��

��

 becomes 

2
2

0 0 2

E
E

t
µ ε

∂
∇ =

∂

��

��

. 
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Voilà! Compare this equation 

2
2

0 0 2

E
E

t
µ ε

∂
∇ =

∂

��

��

 to the wave equation 

 

2 2

2 2 2

( , ) 1 ( , )x t x t

x v t

ψ ψ∂ ∂
=

∂ ∂
 

 

 It is the wave equation for the electric field with 0 02

1

v
µ ε= . 

 

Guess what Maxwell found for the speed 
0 0

1
v

µ ε
=

 when he put in the numerical 

values for 0µ  and 0ε ? He found a value close to the then known value of the speed of 

light. This was in 1861. He concluded that light was an electromagnetic phenomenon. 
We will summarize our results below replacing the speed with the speed of light symbol. 
 

2
2

0 0 2

E
E

t
µ ε

∂
∇ =

∂

��

��

, where 
0 0

1
c

µ ε
=

. 

Therefore, 

2
2

2 2

1 E
E

c t

∂
∇ =

∂

��

��

 

 
For homework, you are going to derive the same equation, but with the magnetic field 
replacing the electric field. It will be fast because you will be coaxed to use the powerful 
identity we derived, thus taking a shortcut. 
 

2
2

0 0 2

B
B

t
µ ε

∂
∇ =

∂

��

��

. 

 

Once again we find 
0 0

1
c

µ ε
=

. 

 

F3. Electromagnetic Waves  
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The axes at the left are defined  with the usual association 

of the unit vectors i
∧

, j
∧

, and k
∧

 with x , y , and z  

respectively. Note also that we have a right-handed system 
with 

i x j k
∧ ∧ ∧

= . 

For [ ]0 sin ( )E E k z ct i
∧

= −
��

, you will show for 

homework that B
��

 is along the y  axis with [ ]0 sin ( )B B k z ct j
∧

= −
��

, i.e., in phase 

with E
→

. 

Courtesy P.wormer, Wikimedia 

 

 
 

Adapted from Philip Ronan, Wikimedia 


