
Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License 

 

Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter O Notes. Fourier Series 
 
O1. Fourier's Theorem. 
 

Jean Baptiste Joseph Fourier (1768-1830)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 

 
This section presents Fourier's Theorem suitable 
for the general student, where we concentrate on 
visualization. Later we will give the standard 
presentation for math and science majors. 
 

 
 
So the chef can cook up any period wave using the harmonic series as ingredients. 
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Let's order a square wave and watch the chef at work. The first ingredient is the first 
harmonic at "one full cup" which overshoots the crest a little. Among friends, is this 
close enough? Not really. 

 
Below we analyze the corrections needed to improve our wave so far. 
 

Note that the corrections are in step with a 
sine wave that has triple the frequency of 
our first harmonic. This means we need the 
third harmonic. 
 
Here the chef instinctively throws in 1/3 cup 
of the third harmonic. Later, we will derive 
this result and all the other amplitude values. 
For now, we are focusing on visualization so 
that we can understand more fully what we 
will do later. Check out our H1+H3 sum. 
 

 
 
Remember that the harmonic series consists 
of a infinite series of sine waves where the 
nth harmonic frequency is given by 

 

1nf nf= , where 1,2,3,...n =  
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Note that the chef did not need to use the second harmonic, i.e., second ingredient from 
the cupboard. What is the next step? 

We note the corrections needed to 
make our synthesized wave look even 
more like the desired goal, the square 
wave. 
 
Note that the needed corrections are 
in step with the fifth harmonic. 
 
Here the chef instinctively knows to 
put a dash of the fifth harmonic at 1/5 
cup. Again, we will derive this result 
later in this chapter. 
 
Note that the chef did not need the 
fourth harmonic. Look at the wave so 
far at the left. The next correction will 
be in step with the seventh harmonic. 
 
The recipe is to use the odd harmonics 
with amounts 1, 1/3, 1/5, 1/7, etc. 
 
Our recipe can be conveniently written 

on an postcard to mail others as illustrated in the left figure below. 
 

 

 
The above right figure shows a strange effect at the edges - the "rabbit ears." This is 
called the Gibbs phenomenon. As more and more odd harmonics are added, these 
"batman" ears close shut but overshoot the square wave's height. Mathematicians do 
not consider this a perfect match. But the areas of the square wave crest and 
synthesized wave match. This makes physicists happy enough. You can't hear a wave 
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closed shut anyway because it has no time interval. So both the square wave and 
synthesized wave will sound exactly the same. 
 

O2. Orthogonal Functions.  
 

Since we are dealing here with periodic waves we will choose our wavelength λ  for 

each wave to be 2π  and center the wave so we can focus on x values from π−  to 

π+  for our analysis of one cycle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Courtesy Omegatron, Wikimedia 
 

PO1 (Practice Problem). Show how a periodic function ( )f x  with wavelength 2π  

can be scaled to wavelength λ  in the form ( )f z . Express z  in terms of x . 

 
The mathematical form for adding our sine waves is 
 

1

( ) sin( )n n

n

f x A nx φ
∞

=

= +∑ , 
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where we allow for the sine waves to be shifted in phase for the general case. The 

amplitudes nA  for our square-wave recipe are 1, 1/3, 1/5, ... 

 
To allow for synthesizing a square wave that is shifted upward, we add a constant 
 

0

1

( ) sin( )n n

n

f x A A nx φ
∞

=

= + +∑ . 

 

Since sin( ) cos sin sin cosα β α β α β+ = +  from our first chapter, we can write 

 

sin( ) cos( )sin sin( )cosn n nnx nx nxφ φ φ+ = +  

 

sin( ) cos( ) sin( )n n nnx a nx b nxφ+ = +  

 
We can cash in the phases if we include the cosine series. 
 

[ ]0

1

( ) cos( ) sin( )n n

n

f x A a nx b nx
∞

=

= + +∑  

 

For some periodic wave, we would like to find the coefficients 0A , na , and nb . Think 

of this challenge by an analogy with vectors. Suppose we know a vector 
ɵ3 4i j+ɵ  and 

want a formal way to pull out the components xA , y
A , and zA  . 

 

ɵ ɵ ɵ3 4
x y z

i j A i A j A k+ = + +ɵ ɵ
 

 
We can do this formally by taking dot products 
 

ɵ ɵ ɵ(3 4 ) ( )
x y z

i i j i A i A j A k⋅ + = ⋅ + +ɵ ɵ ɵ ɵ
, and similarly for 

ɵj  and 
ɵk , 

 
finding 

3 xA= ,  4 y
A= , and 0 zA= . 
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Is there an analogous orthogonality relation for functions. We know from our eigenvalue 
problem that eigenspinors are orthogonal. What about the eigenfunctions for our square 
well? 
 

Here is an eigenvalue problem we worked out: 3 3 3
H Eψ ψ=  

 

33
2

L
λ

=
          3

3

2
k

π

λ
=

 

3

2 3

(2 / 3)
k

L L

π π
= =

     3 3
( ) sin( ) sin(3 / )x A k x A x Lψ π= =  

The nth eigenstate is 

( ) sin( / )
n n

x A n x Lψ π=  with energy 

2 2 2

2
2

n

n
E

mL

π
=

ℏ

. 

 

Remember  1
2Lλ = . So we can write 

 

1
( ) sin(2 / )

n n
x A n xψ π λ=  

 

In keeping with our fundamental wavelength 1
2λ λ π= =  for our periodic wave, 

then 
 

( ) sin( )
n n

x A nxψ =  

 

The n
A  is the normalization constant so that 

 

2 2
( )* ( ) sin ( ) 1

n n n
x x dx A nx dx

π π

π π
ψ ψ

+ +

− −
= =∫ ∫  

 
We will do this integral using Euler's formula. 
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cos sin
ie iθ θ θ= +  

 

cos sin
ie iθ θ θ− = −  

 

sin
2

i i
e e

i

θ θ

θ
−−

=
 

 

sin( )
2

inx inx
e e

nx
i

−−
=

 

 

2 2

2 2
sin ( )

4

inx inx
e e

nx
−− +

=
−  

 

2 2
sin ( ) 1

n
A nx dx

π

π

+

−
=∫  

 

 
One of our integrals is this one. 

 

[ ]
2

2 1
cos(2 ) sin(2 )

2 2

inx
inx e

e dx nx i nx
in in

π π
π

π
ππ

+ +
+

−
−−

= = +∫
 

[ ] [ ]
1 1

cos(2 ) sin(2 ) cos( 2 ) sin( 2 )
2 2

n i n n i n
in in

π π π π= + − − + −

 

[ ] [ ]
1 1

cos(2 ) sin(2 ) cos(2 ) sin(2 )
2 2

n i n n i n
in in

π π π π= + − −
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[ ] [ ]
1 1

cos(2 ) cos(2 ) sin(2 ) sin(2 )
2 2

n n n i n
in in

π π π π= − − −
 

 

[ ] [ ]
1 1

0 0 0 0
2 2in in

= − − =
 

 

PO2 (Practice Problem). Show 

2
0

inxe dx
π

π

+
−

−
=∫ . 

 
This leaves the integral of the middle term in 
 

2 2

2 2
sin ( )

4

inx inx
e e

nx
−− +

=
−  

 

[ ]2 1 1
sin ( ) ( )

2 2 2

x
nx dx dx

π
π π

π π
π

π π π
+

+ +

− −
−

= = = − − =∫ ∫  

 

Using this result with our original integral 
 

2 2
sin ( ) 1

n
A nx dx

π

π

+

−
=∫ , 

 
gives us the normalization constant 

1
n

A
π

=
. 

 
What about integrating two different eigenfunctions? This could be our dot product 
analogy. We consider integrals. Look at this one where n and m are now different. 
 

sin( )sin( ) ?nx mx dx
π

π

+

−
=∫  
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sin( )sin( )
2 2

inx inx imx imx
e e e e

nx mx
i i

− −   − −
=    
     

Since n m≠ , all integrals have the form 
 

[ ]
1

cos( ) sin( ) 0
ipx

ipx e
e dx px i px

ip ip

π π
π

π
ππ

+ +
+

−
−−

= = + =∫  

 
The functions are said to be orthogonal. The integral serves as the dot product. 
 
Summary: 

sin( )sin( )
nm

nx mx dx
π

π
πδ

+

−
=∫  

 

( )* ( )n m nmx x dx
π

π
ψ ψ δ

+

−
=∫  

 

O3. Fourier Series.  
 

[ ]0

1

( ) cos( ) sin( )m m

m

f x A a mx b mx
∞

=

= + +∑  

 
You can use any summation variable you want in the above integral. Our aim is to 
project out one of the coefficients. Try this integral.  
 

( )sin( )f x nx dx
π

π

+

−∫  

 

0

1

sin( ) sin( )cos( )m

m

A nx dx a nx mx dx
π π

π π

∞+ +

− −
=

= +∑∫ ∫  

 

1

sin( )sin( )m

m

b nx mx dx
π

π

∞ +

−
=

+∑ ∫  
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0

1 1

sin( ) sin( )cos( )
m m nm

m m

A nx dx a nx mx dx b
π π

π π
π δ

∞ ∞+ +

− −
= =

= + +∑ ∑∫ ∫  

 

0

1

sin( ) sin( )cos( )
m n

m

A nx dx a nx mx dx b
π π

π π
π

∞+ +

− −
=

= + +∑∫ ∫  

 
If the first two integrals are zero, we are in business. 

 
PO3 (Practice Problem). Show that the first two integrals are zero. What about odd 
functions integrated over a symmetric region? 
 

Summary: 

[ ]0

1

( ) cos( ) sin( )m m

m

f x A a mx b mx
∞

=

= + +∑  

 

1
( )sin( )

n
b f x nx dx

π

ππ

+

−
= ∫  

 
 

PO4 (Practice Problem). Show the following. 

 

0

1
( )

2
A f x dx

π

ππ

+

−
= ∫  

 
PO5 (Practice Problem). Show the following using the exponential substitutions 
we did for the sine case. 

 

1
( )cos( )

n
a f x nx dx

π

ππ

+

−
= ∫  

 

To make all the constant integrals look similar, define 0a  as follows. 

 

0

0

1 1 1
( ) ( )

2 2 2

a
A f x dx f x dx

π π

π ππ π

+ +

− −

 
= = =   

∫ ∫  
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Then, 

[ ]0

1

( ) cos( ) sin( )
2

m m

m

a
f x a mx b mx

∞

=

= + +∑  

0

1
( )a f x dx

π

ππ

+

−
= ∫  

1
( )cos( )

n
a f x nx dx

π

ππ

+

−
= ∫  

1
( )sin( )

n
b f x nx dx

π

ππ

+

−
= ∫  

 

O4. The Square Wave.  

[ ]0

1

( ) cos( ) sin( )
2

m m

m

a
f x a mx b mx

∞

=

= + +∑  

0

1
( )a f x dx

π

ππ

+

−
= ∫  

 

1
( )cos( )

n
a f x nx dx

π

ππ

+

−
= ∫  

 

1
( )sin( )

n
b f x nx dx

π

ππ

+

−
= ∫  
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Since the above square wave is an odd function, the 0a  and na  integrals are zero. 

The nb  integral is the one that will give nonzero values. 

 

0

1 2
( )sin( ) sin( )

n
b f x nx dx nx dx

π π

ππ π

+

−
= =∫ ∫  

 

[ ]
0

2 cos( ) 2 1
cos( ) cos(0)

n

nx
b n

n n

π

π
π π

= − = − −
 

 

For even 2n k= , where 1, 2,3...k =  

 

[ ]2

2 1 2 1
cos(2 ) cos(0) (1 1) 0

2 2
k

b k
k k

π
π π

= − − = − − =
 

 

For even 2 1n k= − , where 1, 2,3...k =  

 

[ ]2 1

2 1
cos(2 ) cos(0)

2 1
k

b k
k

π π
π

− = − − −
−  

 

2 1 4 1
( 1 1)

2 1 2 1k kπ π
= − − − =

− −  

 
So we have our result from our visualization section. 
 

4 1
n

b
nπ

=
 for odd n . 

 

4 1 1 1
( ) sin sin(3 ) sin(5 ) sin(7 )...

3 5 7
f x x x x x

π

 
= + + +    

 
 


