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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter Q Notes. Laplace Transforms 
 
Q1. The Laplace Transform. 

Pierre-Simon Laplace (1749-1827)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
The Laplace transform is defined as follows: 

0
( ) ( )

st
F s f t e dt

∞
−= ∫ , where 0s > . 

 
This is also written with the notation shown below. 
 

( ) { ( )}F s L f t=  

 
In the spirit of our theoretical physics course, we 
would like to "derive" this formula. 

 
We will follow Prof. Mattuck's "derivation," one that he gives in his Differential Equations 
course at MIT. At this point, do not be concerned with any applications of the Laplace 
transform. We will do that later. 
 

Prof. Arthur Mattuck, MIT 
Differential Equations 
 
Prof. Mattuck uses the trick 
 

ln xx e=  
 
to show how to arrive at the 
Laplace transform from an 
infinite series. 
 
We start with the power series 

( )
n

n

n o

A x a x
∞

=

=∑ , 

where we write A(x) since the coefficients are given by the little an. 
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Since each n is one more than the previous one, 1n∆ =  and we write 
 

( )
n

n

n o

A x a x n
∞

=

= ∆∑ . 

 
Now to go to a continuous variable, we change this to an integral. Remember our three 
steps: 1)change the delta to "d", 2)rip off the n index and replace with a function of your 
promoted continuous variable, and 3)turn the summation sign into a "snake" (an integral 
sign). 

0
( ) ( )

n
A x a n x dn

∞

= ∫  

Everyone loves the natural base e, so we use the trick 
ln xx e=  and write the above 

as 

ln ln

0
( ) ( )

n
x x

A e a n e dn
∞

 =  ∫  

 

To increase our chances that this integral will not "blow up" in our face, we restrict ln x  

so that it is negative. Therefore, we want ln 0x ≤ . This occurs when 0 1x≤ ≤ , 
visualized from the plot below. 

 
Image Courtesy The Australian 
Learning and Teaching Council, 
School of Physics, The University of 
New South Wales, Australia. 
 
Therefore, 
 

ln x s= − , where 0s > . 
 
We then have 

0
( ) ( )

n
s s

A e a n e dn
∞

− − =  ∫ ,  

 
which is 

 

0
( ) ( )

s sn
A e a n e dn

∞
− −= ∫  
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Now two things look strange. First, that 
se−

 in the argument. So we fix this by writing 
 

0
( ) ( ) ( )

s sn
A e F s a n e dn

∞
− −≡ = ∫  

 
Next, that n looks strange since we typically reserve "n" for integers. So let's use the 
variable "t" instead. Then, 

0
( ) ( )

st
F s a t e dt

∞
−= ∫  

 
Finally, since we originally started with "A" matched to the little "a," let's replace a(t) with 
f(t) so that "F" is matched with little "f." 
 

0
( ) ( )

st
F s f t e dt

∞
−= ∫     where   0s > . 

 
This is the Laplace transform. 
 

Q2. Evaluating Laplace Transforms. 

 
Still, do not concern yourself with any applications. Let's become familiar with the 
Laplace transform by evaluating Laplace transforms for some common functions f(t). 
 

The function ( ) 1f t =  

 

0 0
( ) ( )

st st
F s f t e dt e dt

∞ ∞
− −= =∫ ∫  

 

0

1
( ) 0

ste
F s

s s

∞
−

 
= = −  − −   

 

1
( )F s

s
=

, where 0s > . 
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      ( ) 1f t =      ( ) 1/F s s=  

 
 

 
 
 
 
 
 
 
 

 
Images made at www.mathisfun.com, Function Grapher and Calculator. 

 
Think of these two graphs as residing in two separate spaces, like two worlds. The 
simple constant function in t-space appears as 1/s in s-space. See the analogy below 
where we transform from the real night sky to Van Gogh's Starry Night (1889). 

 
         Normal Space      Van Gogh Space 

 
 
 
 
 
 
 
 
 
 
 
 
 

The function ( )
at

f t e=  

 

( )

0 0
( )

at st a s tF s e e dt e dt
∞ ∞

− −= =∫ ∫ . We must have s a> . 

 

( )

0

1 1
( ) 0

a s t
e

F s
a s a s s a

∞−
 

= = − = − − −     for   s a>  
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Summary:   

1
( )F s

s a
=

− ,   where   s a> . 

 

The function ( ) ( )
atg t e f t=  and the Laplace Transform Shifting Property 

 

( )

0 0
( ) ( ) ( )

at st s a tG s e f t e dt f t e dt
∞ ∞

− − −= =∫ ∫  

 

( ) ( )G s F s a= − , where s a> . 

 

PQ1 (Practice Problem). Find the Laplace transform for ( )
at

f t e=  by using the 

shifting property ( ) ( )G s F s a= − , where ( ) ( )
at

g t e f t=  with ( ) 1f t = . 

 
 

The functions ( ) cosf t tω=  and sin tω  

We use the Real-Imaginary Trick and take ( ) cos sin
i t

f t t i t e
ωω ω= + = . The 

imaginary number "i" keeps the two the functions separate for us. 
 

Use 

1
{ }

at
L e

s a
=

−  with a iω= . 

 

1
{ }

at
L e

s iω
=

−  

 

2 2

1
{ }

at s i s i
L e

s i s i s

ω ω

ω ω ω

+ +
= =

− + +  

 
 

2 2
{cos }

s
L t

s
ω

ω
=

+      and     2 2
{sin }L t

s

ω
ω

ω
=

+  
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The cosine and sine functions can also been worked with in the traditional manner. 
 

The function ( ) cosf t tω=  (the traditional way). 

 
 

Let's use the backward Euler formula: cos
2

i t i te e
t

ω ω

ω
−+

=  

 

0 0

1 1
( )

2 2

i t st i t stF s e e dt e e dtω ω
∞ ∞

− − −= +∫ ∫  

 

Now use our former result 

1
{ }

at
L e

s a
=

−  where s a> . 

 
 

1 1 1
( )

2
F s

s i s iω ω

 
= + − +   

 

2 2

1 2
( )

2

s
F s

s ω

 
=  +   

 

2 2
( )

s
F s

s ω
=

+  

 
 

PQ2 (Practice Problem). Use the traditional way to show that the Laplace transform for 

( ) sinf t tω=  is  

2 2
( )F s

s

ω

ω
=

+ . 
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PQ3 (Practice Problem). Use the shifting property that the Laplace transform of 

( ) ( )
at

g t e f t=  is ( ) ( )G s F s a= −   to show that the Laplace transform of 

( ) cos
at

f t e tω−=  is 

2 2
( )

( )

s a
F s

s a ω

+
=

+ + . 

 
PQ4 (Practice Problem). Use the shifting property to show that the Laplace transform 

of ( ) sin
at

f t e tω−=  is 

2 2
( )

( )
F s

s a

ω

ω
=

+ + . 

The function ( )
n

f t t=  

0
( )

n stF s t e dt
∞

−= ∫  

 

0
( )

n

std
F s e dt

ds

∞
− 

= −  
∫  

 

( ) {1}

n
d

F s L
ds

 
= −    

 

1
( )

n
d

F s
ds s

 
= −    

 

1

!
( )

n

n
F s

s
+

=
 

 
By the way, note also that the Laplace transform is a linear operation 
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{ ( ) ( )} { ( )} { ( )}L f t g t L f t L g tα β α β+ = +  

 

PQ5 (Practice Problem). Explain or show why {0} 0L = . 

 

Our Laplace Transform Table ( 0)s a> > . 
 

 

( )f t  

 

 

( )F s  

 

 

1 
1

s  

 

nt  1

!
n

n

s
+  

 

ate  

1

s a−  

 

cos tω  
2 2

s

s ω+  

 

sin tω  2 2
s

ω

ω+  

 

cos
ate tω−

 2 2
( )

s a

s a ω

+

+ +  

 

sin
ate tω−

 2 2
( )s a

ω

ω+ +  
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Q3. The Laplace Transform of a Derivative. 

 

0
{ '( )}

stdf
L f t e dt

dt

∞
−= ∫  

 
We will use integration by parts. Always think of integration by parts as being related to 
the product rule for differentiation. 
 

st st std df
f e e fse

dt dt

− − −  = −   

 
Therefore, 

0 0
{ '( )}

st std
L f t f e dt s f e dt

dt

∞ ∞
− − = + ∫ ∫  

 

0
{ '( )} { ( )}

stL f t fe sL f t
∞−= +

 

 

It is important that ( )
st

f t e<  so the integral converges. 

 

0
{ '( )} { ( )} 0 (0) ( )

stL f t fe sL f t f sF s
∞−= + = − +

 

 

{ '( )} ( ) (0)L f t sF s f= −  

 
Next, consider a Laplace transform of a second derivative. The trick is to consider the 
second derivative as a first derivative of something. 
 

{ "( )} { '( )}L f t L g t=    with   ( ) '( )g t f t=  

 

{ '( )} ( ) (0)L g t sG s g= −    with   ( ) ( ) (0)G s sF s f= −  

 

2
{ "( )} ( ) (0) '(0)L f t s F s sf f= − −  
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Q4. Differential Equations: Radioactive Decay. Now comes the 
application! 
 
1. Take the Laplace Transform of Your Differential Equation 
 

The Differential Equation MELTS into an Algebraic Equation in s-Space 
 

         Normal Space      Van Gogh Space 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2. Solve the Algebraic Equation in s-Space 
 
3. Use Your Laplace Transform Table to Come Home to Regular Space 

 
Your "Laplace Transform Table" is your porthole to return home. 
 
Radioactive Decay 
 
The infinitesimal change in the number of radioactive decay particles is proportional to 
the product of the number of particles remaining and the infinitesimal time interval. The 
minus sign indicates a decrease in radioactive particles remaining. 
 

dN Ndtλ= −  with 0λ >  

 
Therefore, the rate of change is proportional to what you have left. 

 

dN
N

dt
λ= −  

 
PQ6 (Practice Problem). Solve the above differential equation using standard 
methods. We will solve this differential equation using Laplace transforms. 
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We will use this form for our equation. 
 

( )
( ) 0

dN t
N t

dt
λ+ =

 

 
1. Take the Laplace Transform 
 

( )
{ } { ( )} {0}

dN t
L L N t L

dt
λ+ =

 

 

Remember that { '( )} ( ) (0)L f t sF s f= − .  Therefore. 

 

( ) (0) ( ) 0sF s N F sλ− + =  

 
2. Solve Your Algebraic equation 
 

( ) ( ) (0)sF s F s Nλ+ =  

 

( )( ) (0)F s s Nλ+ =  

 

(0)
( )

N
F s

s λ
=

+  

 
3. Use the Laplace Transform Table to Get Your Solution 

 

1 1 1
( ) { ( )} (0) { }N t L F s N L

s λ
− −= =

+  

 
 

ate  

1

s a−  

 
 

( ) (0)
t

N t N e
λ−=  
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Q5. The Damped Harmonic Oscillator. 
 

A Mass is Attached to Spring. 
Courtesy David M. Harrison 
Department of Physics, University of Toronto 
 
Recall our mass on the spring. 
 

F kx bv ma= − − =  
 

2

2
0

d x dx
m b kx

dt dt
+ + =

 

 
Let's solve this with initial conditions 

(0)x A=  and 
(0)

(0)
2

dx b
v A

dt m
≡ = − . 

 
 

 
We will need the Laplace transform for the first and second derivatives: 
 

{ '( )} ( ) (0)L f t sF s f= −  and 
2

{ "( )} ( ) (0) '(0)L f t s F s sf f= − − . 

 
1. Take the Laplace Transform 
 

2

2
0

d x dx
m b kx

dt dt
+ + =

 

 

[ ]2
( ) (0) (0) ( ) (0) ( ) 0m s F s sx v b sF s x kF s − − + − + =   

With our initial conditions (0)x A=  and 
(0)

2

b
v A

m
= −

 we have 

 

[ ]2
( ) ( ) ( ) 0

2

b
m s F s sA A b sF s A kF s

m

 
− + + − + =    
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2. Solve Your Algebraic equation 
 

2
( )

2

b
F s ms bs k Ams A Ab + + = − +   

2

( )
2( )

b
ms

F s A
ms bs k

+
=

+ +  

 
 
3. Use the Laplace Transform Table to Get Your Solution 

1 1

2

( )
2( ) { ( )} { }

b
ms

x t L F s L A
ms bs k

− −
+

= =
+ +  

 
From our table, it appears we have something close to this one below. This looks 
promising so complete the square in the denominator. 

 
 

 

cos
ate tω−

 2 2
( )

s a

s a ω

+

+ +  

 
First divide by the mass m. 

2

( )
2( )

b
s

mF s A
b k

s s
m m

+
=

+ +  

 

2 2

( )
2( )

2 2

b
s

mF s A
b k b

s
m m m

+
=

   
+ + −      
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Matching this with 2 2
( )

s a

s a ω

+

+ +  gives us 

 
 

2

b
a

m
=

   and   

2

2

2

k b

m m
ω

 
= −       with the solution 

 
 
 

( ) cos
atx t Ae tω−=  

 
 

Note that if there is no friction, i.e., 0b = , then 
2 k

m
ω =

. This angular frequency 

for the frictionless oscillator is defined as 

2

0

k

m
ω =

, i.e., 0

k

m
ω =

. In classical 

mechanics one often defines 2

b

m
β =

, calling this the damping coefficient. 

 
With these definitions: 
 
 

0

k

m
ω =

 and 2

b

m
β =

, 

 
 

2

b
a

m
β= =

   and   

2

2 2 2

0
2

k b

m m
ω ω β

 
= − = −   . 
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Summary: For the initial conditions (0)x A=  and (0)
2

b
v

m
= − , 

( ) cos
t

x t Ae t
β ω−= , where 2

b

m
β =

 and 
2 2 2

0
ω ω β= − . 

 

 
Courtesy User LP, Wikimedia Commons 

 

Since 
2

2 f
T

π
ω π= = , the period of the damped oscillations is 

2
T

π

ω
= , i.e., 

 

2 2

0

2
T

π

ω β
=

− . 


