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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter R Notes. Convolution 
 
R1. Review of the RC Circuit. The convolution is a "difficult" concept to grasp. So 

we will begin this chapter with a review of the basic RC circuit, which we plan to use for 
our discussing convolution.  

 
 
The voltage from bottom to top on the left side of the 

circuit is 0V , which must be the same if you go up the 

right side: 
 

0 R CV V V= + . 

 
The voltage across the resistor is given by Ohm's Law: 
 

RV IR=  

 
This law states that if you increase the voltage across a resistor, you increase the 
current. Think of a simple circuit with a battery and resistor. The greater the voltage, the 
greater the current. If you replace the resistor with one with a greater resistance, then 
you decrease the current. Ohm's Law specifically states the resistance for a given 
resistor is constant. Then you have a linear graph when you plot the voltage against the 
current. 

For the capacitor, the greater the voltage CV , the greater the charge q  in a linear 

fashion. So we write the voltage CV  as proportional to the charge q . 

 

CV q∼  

 

The capacitance C  is a constant that gives us a measure of how easily the capacitor 

can store lots of charge. If the capacitance is greater, then it can store more charge q , 

given a fixed voltage CV . To make this come out right, we divide the charge by the 

capacitance: 

C

q
V

C
=
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Both RV IR=  and C

q
V

C
=

 have their limits. If you zap either the resistor or the 

capacitor with too high a voltage, you can waste them and thus burn them out. 
 

With these substitutions, our equation 0 R CV V V= +  becomes 

0

q
V IR

C
= +

. 

Imagine attaching the battery at time 0t =  where there 
is no charge initially on the capacitor. Then, initially there 
is a rush of current where  

 

0(0)RV V IR= =    and   (0) 0CV =    since    

 

(0) 0q = . 

 
The capacitor is being charged up. After charging, i.e., waiting a long time, we have no 
more current. 

( ) 0RV ∞ =    and   

( )
( )

C

q
V

C

∞
∞ =

  with 0( )q CV∞ =  

Let's remove the battery by making 0 0V = . 

Assume there is some initial charge 

0(0)q CV=  stored on the capacitor due to prior 

charging. Now we have our standard discharge 
situation. Note that 

dq
I

dt
=

, 

 
i.e., the current is the flow of charge per unit time 
interval. The differential equation describing the 
discharge is 

 

0
dq q

R
dt C

= +
. 
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We can solve this equation by separating the variables q  and t . 

 

dq q
R

dt C
= −  

 

1 1
dq dt

q RC
= −

 

 

( )

(0) 0

1 1q t t

q
dq dt

q RC
= −∫ ∫  

 

( )

(0) 0

1
ln

q t t

q
q t

RC
= −  

 

ln ( ) ln (0)
t

q t q
RC

− = −
 

 

( )
ln

(0)

q t t

q RC
= −

 

 

( )

(0)

t

RC
q t

e
q

−

=
 

 

( ) (0)

t

RCq t q e
−

=  

 

With our prior charge of 0CV , we have. 

 

0
( )

t

RCq t CV e
−

=  
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Summary of the Discharging Circuit. 

0
( )

t

RCq t CV e
−

=  

 

 
 
PR1 (Practice Problem). Solve the differential equation for the charging circuit and 
show that 

0
( ) (1 )

t

RCq t CV e
−

= − . 
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R2. Square Pulse through Low-Pass Filter. We consider our RC circuit 

oriented to receive an input wave. We apply a pulse voltage. The capacitor will begin to 
charge up and then discharge. If the pulse-time is short enough, the capacitor will not 
fully charge. When the pulse voltage drops to zero, the capacitor will discharge. 
 

The output shown is the voltage 
across the capacitor. This RC circuit 
is a low-pass filter by the way. 
 
The physics can be described by a 
convolution. You will understand 
convolution much better with this 
approach because you will know 
everything about this circuit here 

through conventional methods. We are going to simply cast this in terms of convolution. 
 
Even with this said, convolution will still be "difficult" so we make the following 

assignments in order to concentrate on the pure math: 1R =  and 1C = . In other 

words, we have a 1-ohm resistor and a 1-Farad capacitor. We also take 0 1V = , i.e., 

our pulse voltage is 1 volt. And you probably guessed that we will apply the pulse for 1 
second so that each parameter is 1. Then the charging and discharging equations 
simplify. 

Charging: 0
( ) (1 )

t

RCq t CV e
−

= −  becomes ( ) 1
tq t e−

= −  

Discharging 0
( )

t

RCq t CV e
−

=  becomes ( )
tq t e−

= . 

Our applied voltage is represented by ( )f t . The capacitor starts charging. But the 

applied voltage drops to zero after 1 second. At the 1-second point the capacitor has 

charge 
1

1 e−
− . From this moment on the discharge kicks in. Note that the discharge is 

referenced to time 1t − , time greater than 1 second. The functions match at 1t = . 
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R3. Convolution. 
 

You know that an inspiration of our 
course is Richard Feynman, an 
outstanding theoretical physicist. 
 
Feynman always encouraged others to 
work things out for themselves in order 
to really understand what is going on. 
As early as a teenager, Feynman kept 
notebooks in which he worked out 
details for himself in his own way. 
 
Once Feynman commented along 
these lines in reference to 
experimentalists. 
 
"I suddenly realized why Princeton was 
getting results. They were working with 
the instrument. They built the 
instrument; they knew where 
everything was, they knew how 
everything worked, ... It was wonderful! 
Because they worked with it. They 
didn't have to sit in another room and 
push buttons!" Richard Feynman. 
 
Source: Surely you're joking Mr. 
Feynman! (Adventures of a Curious 
Character, by Richard P. Feynman 
(Author), Ralph Leighton (Author), and 

Edward Hutchings (Editor), and Albert R. Hibbs (Introduction), published by W. W. 
Norton & Company (April 17, 2997). Book availabe at www.amazon.com. 
 
By 1985, the year when this book was first published, many so-called "Feynman" stories 
had amassed in the folklore of physics over the years. Many of these are found in this 
book and still more in the companion volume What Do You Care What Other People 
Think?: Further Adventures of a Curious Character. 

 
Following Feynman's stress on the importance of working out details and building the 
instrument, we have prepared the way for convolution this way. We are going to use the 
example we "built" in the previous section - the basic RC circuit covered in the 
introductory physics course, but applied with a pulse voltage. 
 
We sacrifice formal mathematical derivation (the room with the buttons) for insight. 
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You have already met your first convolution. The function at the right below is a 

convolution of a square pulse ( )f t  with the discharging function ( )
tg t e−

=  of the 

capacitor. We will show you what we mean by this now. 
 

 
 

Start with ( )q t  where 1t ≥ . Let's play with this solution. 

 

1 ( 1)
( ) (1 )

tq t e e− − −
= −  

 

( 1)
( )

t tq t e e− − −
= −  

 

( ) ( 1)
tq t e e−

= −  

 
1 0

( ) ( )
tq t e e e−

= −  

 
11

0 0
( )

t u t u
q t e e e e du

− −
= = ∫  

What about for 1t ≤ . Let's check. 
 

00
( ) ( 1) 1

t t
t u t u t t t

q t e e du e e e e e
− − − −

= = = − = −∫  

 

Since ( ) 1f u =  for 1u ≤  and 0 elsewhere, we can write for all t : 

 

0
( ) ( )

t
t u

q t e f u e du
−

= ∫ . 
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Our equation 
0

( ) ( )
t

t u
q t e f u e du

−
= ∫  can also be written as 

 

( )

0
( ) ( )

t
t u

q t f u e du
− −

= ∫ . 

 
 
This is your convolution. So what do we mean mathematically when we state that the 

function ( )q t  is a convolution of a square pulse ( )f t  with the discharging function 

( )
tg t e−

= ? 

 
We simply mean this "convoluted" integral. 
 

( )

0
( ) ( )

t
t u

q t f u e du
− −

= ∫  

 
or more formally the following. 
 

0
( ) ( ) ( )

t

q t f u g t u du= −∫  

 
We convolute f with g. Or we take the convolution of f and g. The notation for 
convolution is given below. 
 

0
( )* ( ) ( ) ( )

t

f t g t f u g t u du= −∫  
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R4. Convolution is Commutative. We demonstrate in this section, using our 

example, that the convolution operator is commutative. 
 

Our two functions for 0 t≤ : ( ) 1f t =  for 0 1t≤ ≤ and ( )
tg t e−

= . 

 
The convolution 

0
( )* ( ) ( ) ( )

t

f t g t f u g t u du= −∫  

 
in the last section gave us 
 

( )

0 0
( )* ( ) ( ) ( )

t t
t u t u

f t g t f u e du e f u e du
− − −

= =∫ ∫  

 
What about 

0
( )* ( ) ( ) ( )

t

g t f t g u f t u du= −∫ ? 

 
How do you shift the pulse function? It is just 1 for the interval or 1 second. This is best 
handled by a change of variable. Define a new integration variable 

 

z t u= − . Then du dz= −  and 
 

as u  goes from 0  to t ,  we have z  going from t  to 0 . 
 

Our convolution 
0

( )* ( ) ( )
t

u
g t f t e f t u du

−
= −∫  with the new variable is 

 

0

0
( )* ( ) ( )( ) ( )

t
z t z t

t
g t f t e f z dz e f z dz

− −
= − =∫ ∫  

 
In the last step the minus was used to flip the order of the integration limits. 

 

0
( )* ( ) ( )

t
t z

g t f t e e f z dz
−

= ∫  

But this is 
0

( )* ( ) ( )
t

t u
f t g t e f u e du

−
= ∫  since we can choose any letter for the 

integration variable. 
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Therefore, convolution is commutative. 

 

( )* ( ) ( )* ( )f t g t g t f t=  

 

0
( )* ( ) ( ) ( )

t

f t g t f u g t u du= −∫  

 

0
( )* ( ) ( ) ( )

t

g t f t g u f t u du= −∫  

 

R5. The Laplace Transform and Convolution. We return to our circuit 

problem to see how Laplace transforms are related to convolutions. 
 
We return to the RC circuit. 

0

q
V IR

C
= +

 

 

With 0 ( )V f t= , 1R = , and 1C = , 

 

( )f t I q= + , i.e., 
( )

dq
q f t

dt
+ =

 

 
We take the Laplace transform of both sides. 
 

{ } { } { ( )}
dq

L L q L f t
dt

+ =
 

 
We need the Laplace transform of our box function. 

 

0
{ ( )} ( )

st
L f t f t e dt

∞
−

= ∫  

 
But we will not need to actually calculate it since we 
are aiming for a more general relationship. 
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{ } { } { ( )}
dq

L L q L f t
dt

+ =
 

 

( ) (0) ( ) ( )sQ s q Q s F s− + =  

 

There is no initial charge, therefore (0) 0q = . 

 

( ) ( ) ( )sQ s Q s F s+ =  

 

( )( 1) ( )Q s s F s+ =  

 

1
( ) ( )

1
Q s F s

s
=

+
 

 
But we know the answer is  

 

0
( ) ( )* ( ) ( ) ( )

t

q t f t g t f u g t u du= = −∫ , where ( )
tg t e−

= . 

 

But WAIT! From out tables, 

1
{ }

atL e
s a

=
−

. Therefore, 

 

1
{ ( )}

1
L g t

s
=

+
. 

 
Check this out. 

( ) ( ) ( )Q s F s G s=  

 
The Laplace transform of a convolution is equal to the product of the Laplace 
transforms. 

 

{ ( )* ( )} ( ) ( )L f t g t F s G s=  

 

{ ( )* ( )} { ( )} { ( )}L f t g t L f t L g t=  
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0

( )* ( ) ( ) ( )
t

f t g t f u g t u du= −∫   ( ) ( )F s G s  

 
 
 
 
 
 
 
 
 
 
 
 
 

R6. Convolution from Power Series. 

Take two power series: 
( )

n

n

n o

A x a x
∞

=

=∑  and 
( )

n

n

n o

B x b x
∞

=

=∑ . 

 
The capital letters are in a world similar to Laplace-transform space when compared to 
their respective little letters. The little letters refer to our world. 
 
Multiply the big ones in transform space. Then we must have some sort of convolution 
for the little "guys." Note that we chose a different summation index for each. If we did 

not, we would only get the diagonal terms when k l= . 
 

0 0

( ) ( )
k l

k l

k l

A x B x a x b x
∞ ∞

= =

=∑ ∑  

 

0 0

( ) ( )
k l

k l

k l

A x B x a b x
∞ ∞

+

= =

=∑∑  

 

0 0

( ) ( )
n

n

k n k

n k

A x B x a b x
∞

−

= =

=∑∑  

 
       Image Grid from www.helpingwithmath.com 
 

Let n k l= + . We will sum k from 0 to n and then n from 0 to infinity to do the job. 
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0 0 0

( ) ( ) ( )
n

n n

k n k n

n k n

A x B x a b x c x C x
∞ ∞

−

= = =

 
= = = 

 
∑ ∑ ∑  

 
 

The new little "guys" are related to old as follows. 
 

0

n

n k n k

k

c a b
−

=

=∑  

 
This is the convolution - the discrete version. Let's move to the continuous case. 
 

0

n

n k n k

k

c a b k
−

=

= ∆∑    since   1k∆ =  

 
Change delta to d, rip off indexes (promoting to continuous variables), and change the 
summation sign into a "snake." 

 

0
( ) ( ) ( )

n

c n a k b n k dk= −∫  

 
Now replace n with t and k with u. 

 

0
( ) ( ) ( )

t

c t a u b t u du= −∫ . 

 
Oh, what the heck, replace "a" with "f" and "b" with "g" and you have 
 

0
( )* ( ) ( ) ( )

t

f t g t f u g t u du= −∫  

 
 

THE CONVOLUTION! 
 
 

THE END 


