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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter T Notes. Poles and the Residue Theorem 
 
T1. Poles.  
 
First Review: 

Complex Variable: z x iy= + , where { , }x y ∈ℝ  

 

Complex Function: ( ) ( , ) ( , )f z u x y iv x y= + , where { , }u v ∈ℝ  

 

The Cauchy-Riemann Conditions define analytic functions ( )f z , 

where 

( )
'( )

df z
f z

dz
=

 is unambiguous and 
( ) 0

C

f z dz =∫� . 

Integration is unambiguous and path independent. 
 

Powers of z are analytic and therefore 
0

( )
n

n

n

f z c z
∞

=

=∑  is analytic. 

 

A pole a  is a point where a non-analytic 

function "blows up." See the integrand 
below. 

1
2dz i

z a
π=

−∫�  

 
The Cauchy Integral Formula below involves an 

analytic function ( )f z  divided by z a− , 

which introduces a pole for the integrand at a . 
 

 

( )
2 ( )

f z
dz if a

z a
π=

−∫�  

 
This is true for any closed path enclosing the pole. 

u v

x y

u v

y x

∂ ∂
=

∂ ∂

∂ ∂
= −

∂ ∂
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Find the poles for 2 2
( )

imz
e

f z
z a

=
+ . 

 
The numerator is fine. The denominator though 
gives us two poles. We find them by factoring and 
setting the denominator to zero. 
 

2 2
( )( ) 0z a z ia z ia+ = + − =  

 
There are two solutions that make the denominator zero. These occur for 

 

z ia=  and z ia= − . 
 

These are the poles. These two poles are illustrated in the above figure. 
 

PT1 (Practice Problem). Find the poles for the following function by factoring and 
check your answer using the quadratic formula. 
 

2

2

3
( )

( 2)

z
f z

z z iz

+
=

+ +  

 
 

PT2 (Practice Problem). Find the poles for the following function using the quadratic 
formula. 
 

2
( )

6 25

ikz
e

f z
z z

=
− +  
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T2. The Residue.  
 

Note that for analytic functions 
( ) 0

C

f z dz =∫� . 

For analytic functions ( )f z , we have 

( )
2 ( )

f z
dz if a

z a
π=

−∫� . 

 

Now consider 

( )
( )

f z
F z

z a
=

− , where ( )f z  is analytic. The function ( )F z  has 

a pole at z a− . We know 
 

( )
( ) 2 ( )

f z
F z dz dz if a

z a
π= =

−∫ ∫� �  

 

We can get this answer by a)clearing out the denominator of ( )F z , b)setting 

z a= , and c)multiplying by 2 iπ . 
 

[ ]( ) 2 ( ) ( )
z a

F z dz i z a F zπ
=

= −∫�  

 

[ ]( ) 2 ( ) 2 ( )
z a

F z dz i f z if aπ π
=

= =∫�  

 

The value ( )f a  is called the residue of ( )F z  at z a= . 

 

( ) ( , )f a Res F a=  

 
The residue of a simple pole is given by 
 

[ ]( , ) lim ( ) ( )
z a

Res F a z a F z
→

= −
. 

 
What about multiple poles? We take this up in our next section. 
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T3. The Residue Theorem. What about multiple poles? 

 
Image Courtesy www.knotebooks.com 
and Prof. Mark Hillery, City University of New York 
Graduate Center 
 
The Case of No Poles. 
 
Well this is easy. A closed contour integral 
gives zero. 
 

( ) 0
C

F z dz =∫�  

 
 

The Case of One Pole. For the pole at 0
z z= , 

 

0
( ) 2 ( , )F z dz iRes F zπ=∫�  

 
We emphasize below that the closed integral can be of any shape! 
 

 
 

www.knotebooks.com and Prof. Mark Hillery, City University of New York Graduate Center 

 

2 1

( ) ( ) ( ) ( ) 0

rC l C l

F z dz F z dz F z dz F z dz+ + + =∫ ∫ ∫ ∫� �  

 
The two line integrals in the limit as the gap approaches zero sum to zero. 
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( ) ( ) 0

rC C

F z dz F z dz+ =∫ ∫� �  

 
 

Since the second integral is clockwise, we get the following result. 
 
 

0
( ) 2 ( , ) 0

C

F z dz iRes F zπ− =∫�  

 

0
( ) 2 ( , )

C

F z dz iRes F zπ=∫�  

 

0
( ) 2 ( , )

Any

F z dz iRes F zπ=∫�  

 
 

The Case of Multiple Poles. For multiple poles we apply a similar trick with paths. 
 

 
Image Courtesy www.knotebooks.com and Prof. Mark 
Hillery, City University of New York Graduate Center 

 
 

1
( ) 2 ( , )

C

F z dz iRes F zπ−∫�  

 

2 3
2 ( , ) 2 ( , ) 0iRes F z iRes F zπ π− − =  

 
 

( ) 2 ( , )
n

nC

F z dz i Res F zπ= ∑∫�  

 
 

This is the Residue Theorem. 
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For our case with three poles:    
1 2 3

( )
( )

( )( )( )

f z
F z

z z z z z z
=

− − −  

 

1
1

1 2 1 3

( )
( , )

( )( )

f z
Res F z

z z z z
=

− −  

 

2
2

2 1 2 3

( )
( , )

( )( )

f z
Res F z

z z z z
=

− −  

 

3

3

3 1 3 2

( )
( , )

( )( )

f z
Res F z

z z z z
=

− −  

 

 

T4. Complex Integration 1. 2
1

dx
I

x

∞

−∞
=

+∫  

 
We will evaluate this integral using complex variable techniques. But first, we evaluate 
this integral from the observation that 
 

1

2

1
tan

1

d
x

dx x

− =
+ . 

 
So we know the answer to this one. It is always good to try a new technique on 
something for which we know the answer. 

 

1
tan

2 2
I x

π π
π

∞
−

−∞

 
= = − − =    
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The method lies in this hope shown below as the radius R → ∞ . 
 

2 2 2 2

1 1

1 1 1 1
RC

dx dx
dz dz

z x z x

∞ ∞

−∞ −∞
= + =

+ + + +∫ ∫ ∫ ∫�
 

 

2

1

1
I dz

z
=

+∫�  

 

2

1 1

1 ( )( )z z i z i
=

+ + −  

 

Let   

1
( )f z

z i
=

+ . 

 
 

1 ( ) 1
2 ( ) 2

( )( ) 2

f z
I dz if i i

z i z i z i i
π π π= = = = =

+ − −∫ ∫� �  

 

or     

1 1
2 ( , ) 2 2

2z i

I iRes F i i i
z i i

π π π π
=

= = = =
+ . 

 

All we have to do now is let R → ∞  and hope that the semicircle integration along 

RC  goes to zero. Then, the complete enclosed contour integral will give a 

nonvanishing answer for just the path along the complete x-axis and we are finished. 

You know this must happen because you have your I π= , which you know is the 
answer. Show  
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lim 0
RC

R
I

→∞
=

, where 
2

1

1R

R

C

C

I dz
z

=
+∫

. 

 

iz Re θ=    and   
idz iRe dθ θ=  

 

2

1

1 (Re )R

R

i

C i

C

I iRe d
θ

θ
θ=

+∫
 

 

2 2

1

1 R eR

R

i

C i

C

I iRe d
θ

θ
θ=

+∫
 

 
For R large 
 

2 2

1
lim

1 R eR

R

i

C iR
C

I iRe d
θ

θ
θ

→∞
=

+∫
 

 

2 2

1
lim

R eR

R

i

C iR
C

I iRe d
θ

θ
θ

→∞
= ∫

 

 

2

2

e
lim

RR

R

i
i

C
R

C

I iRe d
θ

θ θ
−

→∞
= ∫

 

 

e 1
lim lim e 0

RR

R R

i
i

C
R R

C C

I i d i d
R

θ
θθ θ

−
−

→∞ →∞
= = =∫ ∫
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T5. Complex Integration 2. 2 2

imx
e dx

I
x a

∞

−∞
=

+∫  with 0a > , 0m >  

 
Let's organize our procedure into three steps. 
 
Step 1. Find Your Poles. 

2 2
( )

imz
e

F z
z a

=
+  

 

From 
2 2

( )( ) 0z a z ia z ia+ = + − =  we 

find two poles. 1z ia=  and 2z ia= − . 

 
Step 2. Know Where to Close (Choose Your Semicircle). We need to choose the 
semicircle that will not mess up our vanishing semicircle result from the last section. 

Which semicircle should we choose? 0m >  
 
Top - along upper imaginary axis 
 

( )im iR mR
iR e e

−=> =  
 
Bottom - along lower imaginary axis 
 

( )im iR mR
iR e e

−− => =  
 
The top one is the one that will vanish. 

 
Step 3. Sum Your Residues (Use the Residue Theorem). Note that we only have one 

pole inside our enclosed region of integration. This is 1z ia= . 

( ) 2 ( , )
C

F z dz iRes F iaπ=∫�    with   
( )

( )( )

imz
e

F z
z ia z ia

=
+ −  

( , )
2

imz ma

z ia

e e
Res F ia

z ia ia

−

=

= =
+    and   2 2

imx
mae dx

e
x a a

π∞
−

−∞
=

+∫  
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With the Real-Imaginary Trick, we now know the two following integrals where 0a >  

and 0m > . 
 

2 2 2 2 2 2

cos( ) sin( )
imx

e dx mx dx mx dx
I i

x a x a x a

∞ ∞ ∞

−∞ −∞ −∞
= = +

+ + +∫ ∫ ∫  

 
 

2 2

cos( ) mamx dx
e

x a a

π∞
−

−∞
=

+∫      and     2 2

sin( )
0

mx dx

x a

∞

−∞
=

+∫  

 
 

Note that also by the symmetry argument the second integral must be zero. 
 

T6. Complex Integration 3. 2
2 2

imx
e dx

I
x ix

∞

−∞
=

− −∫  where 0m >  

 

Step 1. Find Your Poles. 2
( )

2 2

imz
e

F z
z iz

=
− −  

 

Use the quadratic formula with 
2

2 2z iz− −  to get 

2
( 2 ) ( 2 ) 4(1)( 2)

2(1)

i i− − ± − − −
 

 

2 4 8 2 2

2 2

i i± − + ±
=  

 
Our poles are 

 

1
1z i= − +  

 

2
1z i= +  
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Step 2. Know Where to Close (Choose Your Semicircle). We choose the upper 

plane since we have an exponential of the form 
imze  and remember 0m > . 

 
Se we close in the upper 
plane so that we get 
 

( )im iR mR
e e

−=  
 
along the imaginary axis. 

As R → ∞  we get no 

trouble. Remember when 

we showed for a 2

1

z
 type 

of integrand that the 
semicircle path vanishes. 

We just want to make sure here that the exponential factor does not mess us up. 
  
Step 3. Sum Your Residues (Use the Residue Theorem).  
 

The left figure is not 
needed. It just reminds you 
about the workings of the 
residue theorem. So we 
proceed to find the residues 
for the poles. 
 

2 ( , )
n

n

i Res F zπ ∑  

1 2

( )
( )( )

imz
e

F z
z z z z

=
− −    where 1

1z i= − +  and 2
1z i= +  

 
 

1 2
2 1

( , )
imz imz

n

n z z z z

e e
Res F z

z z z z
= =

= +
− −

∑
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1 2

1 2 2 1

( , )

imz imz

n

n

e e
Res F z

z z z z
= +

− −
∑

 where 1
1z i= − +  and 2

1z i= +  

 
 

2 ( , )
n

n

I i Res F zπ= ∑  

 

1 2 1 2

1 2

2 2

( 2)

imz imz imz imzi i
I e e e e

z z

π π
   = − = −   − −  

 

( 1 ) (1 )im i im i
I i e eπ − + + = − −   

 

( 1) ( 1)m i m i
I i e eπ − − − = − −   

 

im m im m
I i e e e eπ − − − = − −   

 

m im im
I ie e eπ − − = − −   

 

m im im
I ie e eπ − − = −   

 

(2 )
2

im im
m e e

I ie i
i

π
−

−  −
=  

   

 

2
2 sin

2 2

imx
me dx

I e m
x ix

π
∞

−

−∞
= = −

− −∫  

 
 


