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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter V Notes. Transfer Functions 
 
V1. Driven Oscillations and an LP Filter. We return to our low-pass (LP) filter 

with 1R = , 1C = , and ( ) 1f t =  for 1 second from 0t =  to 1t = . The initial 

charge on the capacitor is (0) 0q = . We have already solved this problem. 

 
The charge on the capacitor is 
given by the following integral. 
 

0
( ) ( ) ( )

t

q t f u g t u du= −∫  

 
This solution is the convolution of 

our input voltage function ( )f t  

and the capacitor-decay response function ( )
tg t e−= . The ( )g t  is our unshifted 

Green's function ( ,0)G t . We can also write our general answer with the following 

Green's function notation. 

0
( ) ( , ) ( )

t

q t G t u f u du= ∫      with     
( )

( , )
t uG t u e− −=  

We would like to find the solution for a sinusoidal driving force. 
 

We have     ( ) sinf t tω=      and     
( )

( , )
t uG t u e− −= . 

 
The solution is 

 

( )

0
( ) sin( )

t
t u

q t e u duω− −= ∫  

 

It is easier to integrate an exponential so we use the real-imaginary trick. 
 

( )

0
( ) Im

t
t u i u

q t e e du
ω− −= ∫  
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(1 )

0 0
( ) Im Im

t t
t u i u t i u

q t e e e du e e du
ω ω− − += =∫ ∫  

 

(1 )

0

( ) Im
1

t
i u

t e
q t e

i

ω

ω

+
−

 
=  

+  
 

 

(1 )
1

( ) Im
1

i t
t e

q t e
i

ω

ω

+
−  −

=  
+ 

 

 

( 1) (1 )
( ) Im

1 (1 )

t i t
t e e i

q t e
i i

ω ω

ω ω
−  − −

=  
+ − 

 

 

 

2

( 1)
( ) Im (1 )

1

t i t
t e e

q t e i
ω

ω
ω

−  −
= − 

+ 
 

 

2

( )
( ) Im (1 )

1

i t te e
q t i

ω

ω
ω

− −
= − 

+ 
 

 

2 2
( ) Im (1 ) Im (1 )

1 1

i t te e
q t i i

ω

ω ω
ω ω

−   
= − − −   

+ +   
 

 

Taking the imaginary part of the second term we have the following. 
 

2 2
( ) Im (1 )

1 1

i t te e
q t i

ω ω
ω

ω ω

− 
= − + 

+ + 
 

 

Now we proceed to work on the first term with help from the Euler formula. 
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2 2

(cos sin )
( ) Im (1 )

1 1

t
t i t e

q t i
ω ω ω

ω
ω ω

−+ 
= − + + +   

 

2 2

(sin cos )
( )

1 1

t
t t e

q t
ω ω ω ω

ω ω

−−
= +

+ +       Note that (0) 0q = . 

 

 
Check out the second part. It is the transient component. It goes to zero as t goes to 
infinity. We are interested in the steady-state solution so we throw this last term away. 
Then, 

2

sin cos
( )

1

t t
q t

ω ω ω

ω

−
=

+  for the steady state and transient 2
( )

1

t
e

q t
ω

ω

−

=
+  

 

The dimensions do not look correct in these equations because we have let 1R =  

and 1C = . We can make things look dimensionally correct by a nice trick. We know 

RC  has dimensions of time since we saw its appearance earlier in the exponent as 

t

RCe
−

. Therefore we can define 

1
1

c
RC

ω = =
 and use it as needed to get the right 

dimensions for frequency. The "c" in the subscript stands for cut-off. To make 
 

2

sin cos
( )

1

t t
q t

ω ω ω

ω

−
=

+  

 

look dimensionally correct, we need 

1
1

c
RC

ω = =
 in front of the sine and a 

2

c
ω  in 

the denominator. 

2 2

sin cos
( ) c

c

t t
q t

ω ω ω ω

ω ω

−
=

+  

 
Now it looks more friendly dimensionally by inspection. Now watch this next trick to 
show that we have a sinusoidal oscillation that is out of phase with respect to our 

voltage driving function ( ) sinf t tω= . 
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Do you remember the following trig identity we derived in the first chapter? 
 

sin( ) sin cos cos sinα β α β α β− = −  

 

With tα ω=  we have sin( ) sin cos cos sint t tω β ω β ω β− = −  

 
Compare the following two equations. 
 

2 2

sin cos
( ) c

c

t t
q t

ω ω ω ω

ω ω

−
=

+  

 

sin( ) sin cos cos sint t tω β ω β ω β− = −  

 
Now check out the magic triangle below. 

 

2 2
cos

c c
ω ω ω β= +  

  

2 2
sin

c
ω ω ω β= +  

 

Then we have 
tan

c

ω
β

ω
=

 and the following. 

 

2 2 2 2

2 2

cos sin sin cos
( )

c c

c

t t
q t

ω ω β ω ω ω β ω

ω ω

+ − +
=

+  

 
 

2 2

sin cos cos sin
( )

c

t t
q t

ω β ω β

ω ω

−
=

+  

 

2 2

sin( )
( )

c

t
q t

ω β

ω ω

−
=

+  
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With 0( ) ( ) sin sininV t f t t V tω ω= = =  

 

0
2 2

sin( )
( )

out c

c

t
V t V

ω β
ω

ω ω

−
=

+ .      Why the cω  out in front? 

 
Hint: Dimensional Analysis! 

 
Comparing the amplitudes, we obtain 

 

2 2

( )

( )

out c

in c

V t
T

V t

ω

ω ω
≡ =

+ . 

 
 

where the output has phase given by  

tan
c

ω
β

ω
=

. 

Now you can see below why this is a low-pass filter.  
 

Low Frequencies:      2 20 0
lim lim 1out c c

in cc

V

Vω ω

ω ω

ωω ω→ →
= = =

+  

 

High Frequencies:      2 2
lim lim 0out c

in c

V

Vω ω

ω

ω ω→∞ →∞
= =

+  

One final note, electrical engineers prefer the following conventions. 
 

0( ) sininV t V tω=      and     0
2 2

sin( )
( )

out c

c

t
V t V

ω φ
ω

ω ω

+
=

+  

φ β= −    and   
tan tan( ) tan

c

ω
φ β β

ω
= − = − = −
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V2. Phasors. Engineers often just need 

out

in

V

V  and the phase angle φ . The phasor 

was developed to arrive at these quickly. 
 

V IR=    with input voltage 0( ) cosV t V tω=  

 

0 cos ( )V t I t Rω =  

 
The current is in phase with the input voltage source. 

 

0
cos

( )
V t

I t
R

ω
=

 

q
V

C
=

 with input voltage 0( ) cosV t V tω=  

 

0

( )
cos

q t
V t

C
ω =

       0( ) cosq t CV tω=  

 

0

( )
( ) sin

dq t
i t CV t

dt
ω ω= = −

 

 
The current is not in phase with the input voltage source. 

 

Applied Voltage: 0( ) cosV t V tω=  

 

Current: 0( ) sini t CV tω ω= −  

 
See the figure. The current leads the 
voltage by 90 degrees. The lines with 
arrows in the figure are called phasors. 
 
You use the real part of the phasor for 
the applied voltage and current. 
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Remember our trick to rotate by 90 degrees? You multiply a complex number z by i, 
"making a left face." So in "phasor" language we have the following. 
 

Phasor 0
( )

j tV t V e ω= , where 1j = −  because i  is reserved for current. 

 

It is understood you take the real part: 0 0
( ) Re cos

j tV t V e V tω ω= =  

 

Phasor Current ( ) ( )i t j CV tω=  

 

Check: [ ] 0 0
( ) Re ( ) Re ) sin

j ti t j CV t j CV e CV tωω ω ω ω = = = −   

So in "phasor" language we write: ( ) ( )i t j CV tω=  

 

Comparing this to Ohm's Law: ( ) ( )i t R V t= , the effective resistance depends on 

frequency. We call this the impedance. 

( ) ( )V t i t Z=    and   ( ) ( ) /i t V t Z= ,    where 

1
Z

j Cω
=

. 

 

V3. Transfer Function. Engineers are usually interested in the relative 

transmission amplitude 

( )

( )

out

in

V t
T

V t
=

 through the filter and the phase φ . Watch this 

powerful method using phasors. But first, recall the answer we obtained using the 
Green's function: 

2 2

( )

( )

out c

in c

V t
T

V t

ω

ω ω
= =

+  

tan
c

ω
φ

ω
= −

 

We write the regular voltage equation with impedances. Note that the impedance for the 
resistor is simply R since there is no phase shift for the resistor. 
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Phasors:     ( ) ( ) ( )in R CV t i t Z i t Z= +      and     ( ) ( )out CV t i t Z=  

 

1
( ) ( )inV t i t R

j Cω

 
= + 

 
     and     

1
( ) ( )

out
V t i t

j Cω
=

 

 
Transfer Function 

 

 

( ) 1/ ( )
( )

1( )

out

in

V t j C
H

V t
R

j C

ω
ω

ω

= =

+         

1
( )

1
H

j RC
ω

ω
=

+  

The Magnitude of the Transfer Function is our Transmission 
 

1
( )

1
T H

j RC
ω

ω
= =

+  

PV1 (Practice Problem). From 
2 2z x iy x y= + = + , show that 

1 1

z z
=

. 

2 2

1
( )

1 ( )
T H

RC
ω

ω
= =

+  

Remember our basic definition from before: 

1
c

RC
ω =

 (the cutoff frequency). 

 

2 2

1
( )

1 / ( )
c

T H ω
ω ω

= =
+  

 

2 2

( )

( )

out c

in c

V t
T

V t

ω

ω ω
= =

+  

 
This is our answer from before. 
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From 2

1 1
( )

1 1 ( )

j RC
H

j RC RC

ω
ω

ω ω

−
= =

+ +  we get the phase. 

 

Im ( )
tan

Re ( )

H

H

ω
φ

ω
=

       
tan

1

RCω
φ

−
=

       
tan

c

ω
φ

ω
= −

 

 

Summary: 

1
( )

1
H

j RC
ω

ω
=

+      2 2

1
( )

1 / ( )
c

T H ω
ω ω

= =
+  

 

0( ) sininV t V tω=      and     0
2 2

sin( )
( )

out c

c

t
V t V

ω φ
ω

ω ω

+
=

+  

 

 
 

Courtesy Inductiveload, Wikimedia Commons 
 

The phase of the voltage across the capacitor is behind since 
tan 0

c

ω
φ

ω
= − <

. 

The phase ranges as follows: 
0

2

π
φ− ≤ ≤

. 

PV2 (Practice Problem). Sketch ( ) ( )T Hω ω=  and 

1
tan

c

ω
φ

ω
−= −

 for all 

input frequencies ω . At which frequencies is the phase 0  and / 2π− ? 
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V4. Transfer Function and Transforms. 
 

 
 
 

( )
in

dq q
v t R

dt C
= +

                            
( )

out

q
v t

C
=

 

 
 

1
{ ( )} ( ) ( ) ( )

in
V t j RQ Q

C
ω ω ωℑ = +

        

1
{ ( )} ( )

out
V t Q

C
ωℑ =

 

 
 

( ) ( ) / 1

( ) ( ) ( ) / 1

out

in

V Q C

V j RQ Q C j RC

ω ω

ω ω ω ω ω
= =

+ +  

 
 
 

( )
( )

( )

out

in

V
H

V

ω
ω

ω
=

 

 
 

In transform space, the ratio of the Fourier transform of the output to the Fourier 
transform of the input is the transfer function! 
 
PV3 (Practice Problem). Show that the above can be arrived at from the Laplace 

Transform if you take (0) 0q =  and make the substitution s jω=  after you take 

the Laplace Transform. 


