Theoretical Physics Prof. Ruiz, UNC Asheville Chapter E Homework. Differential Form for the Maxwell Equations

HW-E1. Gradient.

(a) Determine $A(x, y) = \nabla g(x, y)$ where $g(x, y) = x^2 + y^2$.

$$\vec{A}(x, y) = \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right)(x^2 + y^2) = 2x\hat{i} + 2y\hat{j}$$
$$\vec{A}(x, y) = 2x\hat{i} + 2y\hat{j}$$

(b) Calculate $B(x, y) = \nabla f(x, y)$ where $f(x, y) = x^2 y$.

$$\vec{B}(x, y) = \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right)(x^2y) = 2xy\hat{i} + x^2\hat{j}$$
$$\vec{B}(x, y) = 2xy\hat{i} + x^2\hat{j}$$

(c) Find $\overrightarrow{B}(3,2) = \nabla f(3,2)$. $\overrightarrow{B}(3,2) = 2 \cdot 3 \cdot 2 \hat{i} + 3^2 \hat{j}$. (d) $D_u f(3,2) = ?$ for a direction parallel to the vector $\overrightarrow{V} = \hat{i} + 2\hat{j}$.

We use $D_u f(x, y) \equiv \nabla f(x, y) \cdot \hat{u}$. First find the unit vector parallel to $\vec{V} = \hat{i} + 2\hat{j}$. Since the length of \vec{V} is $\sqrt{1^2 + 2^2} = \sqrt{5}$, the unit vector parallel to \vec{V} is $\hat{u} = \frac{1}{\sqrt{5}}\hat{i} + \frac{2}{\sqrt{5}}\hat{j}$ $D_{u}f(3,2) \equiv \nabla f(3,2) \cdot \hat{u} = \overrightarrow{B}(3,2) \cdot \hat{u}$ $D_{i}f(3,2) = (12\hat{i}+9\hat{j})\cdot\hat{u}$ $D_{u}f(3,2) = (12\hat{i}+9\hat{j}) \cdot (\frac{1}{\sqrt{5}}\hat{i}+\frac{2}{\sqrt{5}}\hat{j})$ $D_u f(3,2) = \frac{12}{\sqrt{5}} + \frac{9 \cdot 2}{\sqrt{5}}$ $D_u f(3,2) = \frac{30}{\sqrt{5}}$ $D_u f(3,2) = \frac{30}{5}\sqrt{5}$ $D_{\mu}f(3,2) = 6\sqrt{5}$

Credits: <u>Mathematics at LibreTexts</u> for the paraboloid, <u>desmos.com</u> graphing for the vector figure, and Duane Q. Nykamp for gradient applications at <u>mathinsight.org</u>.

HW-E2. Divergence and Curl. The vector field $\vec{A}(x, y) = x\hat{i} + y\hat{j}$ appears in the left figure and $\vec{B}(x, y) = -y\hat{i} + x\hat{j}$ appears in the right figure below.

Courtesy desmos.com graphing.

Calculate the divergence and curl for each of these vector fields.

Give a description in words for the divergence and curl based on your results and the visualizations of the two fields.

$$\nabla \cdot \vec{A}(x, y) = \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right) \cdot \left(x\hat{i} + y\hat{j}\right) = \frac{\partial x}{\partial x}\hat{i} \cdot \hat{i} + \frac{\partial y}{\partial y}\hat{j} \cdot \hat{j}$$