Theoretical PhysicsExam 2March 24, 2020Prof. Ruiz, UNCAClosed Book/Notes but Calculator is Permitted

1. Engine. Use PV = nRT, $P_0V_0 = nRT_0$, and take the number of moles to be such that $nR = 1 \frac{\text{joules}}{\text{kelvins}} = 1 \frac{J}{K}$. Take the temperature $T_0 = 300$ K. Ρ a. Show that $T_a = 900 \text{ K}$. b b. Show that $T_b = 900 \text{ K}$. $3P_0$ c. Show that $T_c = 2700 \mathrm{K}$. d. Show that $\Delta Q_{a \rightarrow b} = -1200 \, \mathrm{J}$ $2P_0$ e. Show that $\Delta Q_{b
ightarrow c} = 4500 \, \mathrm{J}$ P_0 а f. Show that $\Delta Q_{c \rightarrow a} = -2700 \,\mathrm{J}$. g. Calculate $\eta = \frac{W_{\text{net}}}{O_{\text{ret}}}$. 0 V₀ $2V_0$

2. Stat Mechanics. The energy levels are 0, ε , 2ε , 3ε , 4ε , 5ε , ..., with $\varepsilon = kT$. Use the identity $S = 1 + r + r^2 + r^3 + r^4 \dots = \frac{1}{1-r}$, where r < 1, to show that the partition function $Z = \sum_{n=0}^{\infty} e^{-\frac{E_n}{kT}}$ is 1.58. Find the occupation probability in each of these levels: 0, ε , 2ε , 3ε , 4ε .

3. Quantum Mechanics. The time independent Schrödinger equation in one dimension can be written as $H\psi = E\psi$ where $H = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)$. Let $V(x) = \frac{1}{2}m\omega^2 x^2$. Then consider special units where $\hbar = m = \omega = 1$. Show that $\psi(x) = \frac{1}{\sqrt{\pi}}e^{-\frac{x^2}{2}}$ is an eigenfunction, i.e., $H\psi = E\psi$, and find the eigenvalue E.

4. Eigenvectors and Eigenvalues. Find the normalized eigenvectors and eigenvalues for the

matrix operator $A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$. A vector $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is normalized if $c_1^* c_1 + c_2^* c_2 = 1$.